Author
Abstract
Recent advancements in intelligent technologies and sensor-based data collections pave the way for autonomous driving and facilitate a radical transformation of today’s mobility. Based on auspicious market projections, traditional automotive manufacturers and technology companies invest heavily in the development of autonomous vehicles (AVs). In addition to the profits that the industry expects from self-driving vehicles, this new type of mobility should also solve societal issues like reducing traffic accidents and fatalities by eliminating human driving errors. More efficient autonomous driving is expected to bring improvements in terms of fewer congestions and less fuel consumption, thereby reducing greenhouse emissions. Besides, AVs pledge to entail advantages for their users. Specifically, they increase mobility for the disabled and the older generation. In contrast, younger passengers associate autonomous driving with improved productivity and an enhanced hedonic experience as non-driving activities, such as working or watching a movie, are made possible. Contrary to the above expectations, people also raise concerns regarding self-driving vehicles. They are worried about whether the sensors and systems can correctly interpret complex environmental conditions. Above all, there are doubts whether the technology, even being intelligent, can react appropriately in critical traffic situations made up of humans who sometimes behave unpredictably. In case of unavoidable traffic accidents, ethical questions come into play regarding how the vehicle makes decisions that could result in a person being injured or killed. Finally, the new and sophisticated technology could have vulnerabilities that can be exploited by cybercriminals or allow unauthorized third parties to obtain passenger data. Motivated by the anticipated improvements that AVs entail and the breadth of factors that might influence their adoption, a large body of research investigating relevant adoption factors has accumulated. In order to collect, organize, and combine extant findings, research paper A conducts a structured literature review on the acceptance of autonomous vehicles. Based on 58 articles, it develops an AV acceptance framework consisting of individual user characteristics, vehicle characteristics, and political/societal elements. The framework indicates for each factor whether available research results identify the effect as either positively or negatively significant. Thereby, the paper also sheds light on diverging construct operationalizations, aiming to support researchers in comparing available findings. Eventually, paper A proposes future research avenues across various themes and methods, which build a foundation for further research pursued in this dissertation’s subsequent papers. However, solely balancing significant against non-significant results can come to wrong conclusions since the sample size alone can lead to varying significance levels. Because of this, paper B builds on the literature review and conducts a meta-analysis to include further quantitative analyses. It calculates the mean effect sizes for each AV acceptance factor based on published research results. By doing so, the paper identifies attitude, perceived usefulness, efficiency, trust in AVs, safety, and subjective norms to correlate most strongly with the behavioral intention to use an automated car. A subsequent moderator-analysis shows that almost all acceptance factors are influenced by the study’s methodology and location, the AV’s level of automation, and the examined ownership model, i.e., private cars, car sharing, or public transport. In doing so, paper B observes that most of the available research is on privately owned AVs and hence lacks to assess public as well as shared automated mobility. To fill this gap, paper C investigates characteristics relevant for automated mobility as a service (AMaaS). Based on 23 exploratory interviews with the general public, the paper derives a set of AMaaS requirements. Mobility experts sort these requirements based on commonalities so that a cluster analysis can conceptualize the expected AMaaS characteristics from a practitioner’s view. The paper identifies traffic safety, information privacy, cybersecurity, regulations, flexibility, accessibility, efficiency, and convenience to be relevant service characteristics. It discusses each required characteristic and thereby delineates the constructs’ scopes so that subsequent research can build appropriate measurement instruments. Besides, paper C discovers strongly diverging priorities regarding the respective service characteristics when comparing the potential users’ conversation shares with the experts’ relevance ratings. Paper D builds on the qualitative results of paper C as it develops and validates a hierarchical quality scale for AMaaS. The paper proposes a theoretical model and operationalizes the previously identified service characteristics. Throughout multiple empirical studies with 1,431 participants, the proposed quality scale is refined iteratively until satisfactory psychometric properties are achieved. Nomological validity ensures the scale’s predictability. Paper D progresses research from focussing on the mere acceptance of autonomous driving to the user’s quality perception, which significantly influences user satisfaction and the success of AMaaS. This, in turn, is necessary to realize the promised benefits of autonomous driving in a sustainable manner.
Suggested Citation
Wiefel, Jennifer, 2022.
"Mobility in the Advent of Autonomous Driving – Toward an Understanding of User Acceptance and Quality Perception Factors,"
Publications of Darmstadt Technical University, Institute for Business Studies (BWL)
130864, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
Handle:
RePEc:dar:wpaper:130864
Note: for complete metadata visit http://tubiblio.ulb.tu-darmstadt.de/130864/
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dar:wpaper:130864. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dekanatssekretariat (email available below). General contact details of provider: https://edirc.repec.org/data/ivthdde.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.