IDEAS home Printed from https://ideas.repec.org/p/dar/wpaper/118208.html
   My bibliography  Save this paper

Improving Oil Price Forecasts by Sparse VAR Methods

Author

Listed:
  • Krüger, Jens
  • Ruths Sion, Sebastian

Abstract

In this paper we document the results of a forecast evaluation exercise for the real world price of crude oil using VAR models estimated by sparse (regularization) estimators. These methods have the property to constrain single parameters to zero. We find that estimating VARs with three core variables (real price of oil, index of global real economic activity, change in global crude oil production) by the sparse methods is associated with substantial reductions of forecast errors. The transformation of the variables (taking logs or differences) is also crucial. Extending the VARs by further variables is not associated with additonal gains in forecast performance as is the application of impulse indicator saturation before the estimation.

Suggested Citation

  • Krüger, Jens & Ruths Sion, Sebastian, 2019. "Improving Oil Price Forecasts by Sparse VAR Methods," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 118208, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
  • Handle: RePEc:dar:wpaper:118208
    Note: for complete metadata visit http://tubiblio.ulb.tu-darmstadt.de/118208/
    as

    Download full text from publisher

    File URL: https://tuprints.ulb.tu-darmstadt.de/9643
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    2. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dar:wpaper:118208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dekanatssekretariat (email available below). General contact details of provider: https://edirc.repec.org/data/ivthdde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.