IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/965.html
   My bibliography  Save this paper

Shortest Integer Vectors

Author

Listed:

Abstract

Let A be a fixed integer matrix of size m by n and consider all b for which the body is full dimensional. We examine the set of shortest non-zero integral vectors with respect to the family of norms. We show that the number of such shortest vectors is polynomial in the bit size of A, for fixed n. We also show the existence, for any n, of a family of matrices M for which the number of shortest vectors has as a lower bound a polynomial in the bit size of M of the same degree at the polynomial bound.

Suggested Citation

  • Herbert E. Scarf & Shallcross, David F., 1991. "Shortest Integer Vectors," Cowles Foundation Discussion Papers 965, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:965
    Note: CFP 848.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d09/d0965.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imre Barany & Roger Howe & Laszlo Lovasz, 1989. "On Integer Points in Polyhedra: A Lower Bound," Cowles Foundation Discussion Papers 917, Cowles Foundation for Research in Economics, Yale University.
    2. Herbert E. Scarf & R. Kannan & Laszlo Lovasz, 1988. "The Shapes of Polyhedra," Cowles Foundation Discussion Papers 883, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Bárány & H. E. Scarf & D. Shallcross, 2008. "The topological structure of maximal lattice free convex bodies: The general case," Palgrave Macmillan Books, in: Zaifu Yang (ed.), Herbert Scarf’s Contributions to Economics, Game Theory and Operations Research, chapter 11, pages 191-205, Palgrave Macmillan.
    2. William Cook & Thomas Rutherford & Herbert E. Scarf & David F. Shallcross, 1991. "An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming," Cowles Foundation Discussion Papers 990, Cowles Foundation for Research in Economics, Yale University.
    3. Robert Weismantel, 1998. "Test sets of integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(1), pages 1-37, February.

    More about this item

    Keywords

    Indivisibilities; integer programming; geometry; numbers;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.