IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/686.html
   My bibliography  Save this paper

Stochastic Equilibrium and Turnpike Property: The Discounted Case

Author

Listed:
  • Ramon Marimon

Abstract

The existence of the modified golden rule and the turnpike property are proved for a multi-sector stochastic growth model. The (exogenous) stochastic environment is represented by a stationary stochastic process that influences preferences, technology and resources. A social planner maximizes the expected sum of discounted utilities. The conditions required in order to obtain these results, are the natural strengthening of the stability conditions of the deterministic case. As in the deterministic case, the discount factor must be close to one in order to guarantee the almost sure (and in the mean) convergence of optimal interior programs. It is proved that all optimal interior programs converge to each other. This fact is used to prove the existence of a unique optimal stationary program (the modified golden rule). These results imply that all optimal interior programs converge to the stationary program (the turnpike property).

Suggested Citation

  • Ramon Marimon, 1983. "Stochastic Equilibrium and Turnpike Property: The Discounted Case," Cowles Foundation Discussion Papers 686, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:686
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d06/d0686.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.