IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/681.html
   My bibliography  Save this paper

The Exact Distribution of Exogenous Variable Coefficient Estimators

Author

Abstract

This paper derives the exact probability density function of the instrumental variable (IV) estimator of the exogenous variable coefficient vector in a structural equation containing n+1 endogenous variables and N degrees of overidentification. A leading case of the general distribution that is more amenable to analysis and computation is also presented. Conventional classical assumptions or normally distributed errors and nonrandom exogenous variables are employed.

Suggested Citation

  • Peter C.B. Phillips, 1983. "The Exact Distribution of Exogenous Variable Coefficient Estimators," Cowles Foundation Discussion Papers 681, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:681
    Note: CFP 602.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d06/d0681.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phillips, P C B, 1986. "The Distribution of FIML in the Leading Case," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 27(1), pages 239-243, February.
    2. Forchini, Giovanni, 2010. "The Asymptotic Distribution Of The Liml Estimator In A Partially Identified Structural Equation," Econometric Theory, Cambridge University Press, vol. 26(3), pages 917-930, June.
    3. Cheung Ip, Wai & Phillips, Garry D. A., 1998. "The non-monotonicity of the bias and mean squared error of the two stage least squares estimators of exogenous variable coefficients," Economics Letters, Elsevier, vol. 60(3), pages 303-310, September.
    4. Grant H. Hillier, 1987. "Joint Distribution Theory for Some Statistics Based on LIML and TSLS," Cowles Foundation Discussion Papers 840, Cowles Foundation for Research in Economics, Yale University.
    5. Zhentao Shi, 2016. "Estimation of Sparse Structural Parameters with Many Endogenous Variables," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1582-1608, December.
    6. Hillier, Grant & Kan, Raymond & Wang, Xiaolu, 2009. "Computationally Efficient Recursions For Top-Order Invariant Polynomials With Applications," Econometric Theory, Cambridge University Press, vol. 25(1), pages 211-242, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.