IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2431.html
   My bibliography  Save this paper

Robust Inference for Time Varying Predictability: A Sieve-IVX Approach

Author

Listed:
  • Nan Liu

    (Xiamen University)

  • Yanbo Liu

    (Shandong University)

  • Peter C.B. Phillips

    (Yale University, University of Auckland, Singapore Management University)

  • Yajie Zhang

    (Singapore Management University)

Abstract

Predictive regression models are often used to evaluate the predictive capability of economic fundamentals on bond and equity returns. Inferential procedures in these regressions typically employ parameter constancy or piecewise constancy in slope coefficients. Such formulations are prone to misspecification, more especially during periods of disturbance or evolution in prevailing economic and financial conditions, which can lead to size distortion and spurious evidence of predictability. To address these issues the present work proposes a semiparametric predictive regression model with mixed-root regressors and time-varying coefficients that allow for smooth evolution in the generating mechanism over time. For estimation and inference a novel variant of the self-generated instrument approach called Sieve-IVX is introduced, giving a robust approach to inference concerning time-varying predictability that is applicable irrespective of the degrees of persistence. Asymptotic theory of the Sieve-IVX approach is provided together with both pointwise and uniform inference procedures for testing predictability and model specification. Simulations show excellent performance characteristics of these statistics in finite samples. An empirical exercise is conducted to examine excess S&P 500 returns, \ applying Sieve-IVX regression coupled with pointwise and uniform tests to reveal evidence of time-varying patterns in the predictive capability of commonly used fundamental variables.

Suggested Citation

  • Nan Liu & Yanbo Liu & Peter C.B. Phillips & Yajie Zhang, 2025. "Robust Inference for Time Varying Predictability: A Sieve-IVX Approach," Cowles Foundation Discussion Papers 2431, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2431
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/2025-03/d2431.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    2. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    3. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
    4. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Ferson, Wayne E & Schadt, Rudi W, 1996. "Measuring Fund Strategy and Performance in Changing Economic Conditions," Journal of Finance, American Finance Association, vol. 51(2), pages 425-461, June.
    6. Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kothari, S. P., 2001. "Capital markets research in accounting," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 105-231, September.
    2. repec:wyi:journl:002108 is not listed on IDEAS
    3. Gormsen, Niels Joachim & Jensen, Christian Skov, 2024. "Conditional risk," Journal of Financial Economics, Elsevier, vol. 162(C).
    4. Connie Becker & Wayne Ferson & David Myers & Michael Schill, 1998. "Conditional Market Timing with Benchmark Investors," NBER Working Papers 6434, National Bureau of Economic Research, Inc.
    5. André de Souza & Anthony W. Lynch, 2012. "Does Mutual Fund Performance Vary over the Business Cycle?," NBER Working Papers 18137, National Bureau of Economic Research, Inc.
    6. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    7. Ana Belén Alonso-Conde & Javier Rojo-Suárez, 2020. "Nuclear Hazard and Asset Prices: Implications of Nuclear Disasters in the Cross-Sectional Behavior of Stock Returns," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    8. Davide Pettenuzzo & Allan G. Timmermann & Rossen I. Valkanov, 2008. "Return Predictability under Equilibrium Constraints on the Equity Premium," Working Papers 37, Brandeis University, Department of Economics and International Business School.
    9. Wassim Dbouk & Lawrence Kryzanowski, 2009. "Impact of bond index revisions," Applied Financial Economics, Taylor & Francis Journals, vol. 19(9), pages 693-702.
    10. Cui, Liyuan & Hong, Yongmiao & Li, Yingxing, 2021. "Solving Euler equations via two-stage nonparametric penalized splines," Journal of Econometrics, Elsevier, vol. 222(2), pages 1024-1056.
    11. Javier Rojo-Suárez & Ana Belén Alonso-Conde, 2020. "Impact of consumer confidence on the expected returns of the Tokyo Stock Exchange: A comparative analysis of consumption and production-based asset pricing models," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    12. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    13. Sawicki, Julia & Ong, Fred, 2000. "Evaluating managed fund performance using conditional measures: Australian evidence," Pacific-Basin Finance Journal, Elsevier, vol. 8(3-4), pages 505-528, July.
    14. Christis Katsouris, 2023. "Estimating Conditional Value-at-Risk with Nonstationary Quantile Predictive Regression Models," Papers 2311.08218, arXiv.org, revised Apr 2024.
    15. Stefano Gubellini, 2014. "Conditioning information and cross-sectional anomalies," Review of Quantitative Finance and Accounting, Springer, vol. 43(3), pages 529-569, October.
    16. Luo Wang & Bin Li & Rakesh Gupta & Jen-Je Su & Benjamin Liu, 2017. "Return Predictability in Australian Managed Funds," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 16(1), pages 1-19, June.
    17. Qureshi, Fiza & Khan, Habib Hussain & Rehman, Ijaz Ur & Ghafoor, Abdul & Qureshi, Saba, 2019. "Mutual fund flows and investors’ expectations in BRICS economies: Implications for international diversification," Economic Systems, Elsevier, vol. 43(1), pages 130-150.
    18. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    19. Yi, Li & Liu, Zilan & He, Lei & Qin, Zilong & Gan, Shunli, 2018. "Do Chinese mutual funds time the market?," Pacific-Basin Finance Journal, Elsevier, vol. 47(C), pages 1-19.
    20. Jiang, George J. & Yao, Tong & Yu, Tong, 2007. "Do mutual funds time the market? Evidence from portfolio holdings," Journal of Financial Economics, Elsevier, vol. 86(3), pages 724-758, December.
    21. Turan Bali & Kamil Yilmaz, 2009. "The Intertemporal Relation between Expected Return and Risk on Currency," Koç University-TUSIAD Economic Research Forum Working Papers 0909, Koc University-TUSIAD Economic Research Forum, revised Nov 2009.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.