Author
Listed:
- Jin Seo Cho
(Yonsei University)
- Peter C. B. Phillips
(Yale University)
Abstract
In GMM estimation, it is well known that if the moment dimension grows with the sample size, the asymptotics of GMM differ from the standard finite dimensional case. The present work examines the asymptotic properties of infinite dimensional GMM estimation when the weight matrix is formed by inverting Brownian motion or Brownian bridge covariance kernels. These kernels arise in econometric work such as minimum Cramer-von Mises distance estimation when testing distributional specification. The properties of GMM estimation are studied under different environments where the moment conditions converge to a smooth Gaussian or non-differentiable Gaussian process. Conditions are also developed for testing the validity of the moment conditions by means of a suitably constructed J-statistic. In case these conditions are invalid we propose another test called the U-test. As an empirical application of these infinite dimensional GMM procedures the evolution of cohort labor income inequality indices is studied using the Continuous Work History Sample database. The findings show that labor income inequality indices are maximized at early career years, implying that economic policies to reduce income inequality should be more effective when designed for workers at an early stage in their career cycles.
Suggested Citation
Jin Seo Cho & Peter C. B. Phillips, 2024.
"GMM Estimation with Brownian Kernels Applied to Income Inequality Measurement,"
Cowles Foundation Discussion Papers
2411, Cowles Foundation for Research in Economics, Yale University.
Handle:
RePEc:cwl:cwldpp:2411
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2411. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.