IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2400.html
   My bibliography  Save this paper

Self-weighted Estimation for Local Unit Root Regression with Applications

Author

Listed:

Abstract

A new self-weighted least squares (LS) estimation theory is developed for local unit root (LUR) autoregression with heteroskedasticity. The proposed estimator has a mixed Gaussian limit distribution and the corresponding studentized statistic converges to a standard normal distribution free of the unknown localizing coefficient which is not consistently estimable. The estimator is super consistent with a convergence rate slightly below the OP (n) rate of LS estimation. The asymptotic theory relies on a new framework of convergence to the local time of a Gaussian process, allowing for the sample moments generated from martingales and many other integrated dependent sequences. A new unit root (UR) test in augmented autoregression is developed using self-weighted estimation and the methods are employed in predictive regression, providing an alternative approach to IVX regression. Simulation results showing good finite sample performance of these methods are reported together with a small empirical application.

Suggested Citation

  • Zhishui Hu & Nan Liu & Peter C. B. Phillips & Qiying Wang, 2024. "Self-weighted Estimation for Local Unit Root Regression with Applications," Cowles Foundation Discussion Papers 2400, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2400
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/2024-07/d2400.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Self-weighted least squares estimation; autoregression; super consistency; limit distribution; unit root test; predictive regression.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.