IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1348.html
   My bibliography  Save this paper

Penalised Maximum Likelihood Estimation for Fractional Guassian Processes

Author

Listed:
  • Offer Lieberman

    (Technion-Israel Institute of Technology)

Abstract

We apply and extend Firth's (1993) modified score estimator to deal with a class of stationary Gaussian long-memory processes. Our estimator removes the first order bias of the maximum likelihood estimator. A small simulation study reveals the reduction in the bias is considerable, while it does not inflate the corresponding mean squared error.

Suggested Citation

  • Offer Lieberman, 2001. "Penalised Maximum Likelihood Estimation for Fractional Guassian Processes," Cowles Foundation Discussion Papers 1348, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1348
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d13/d1348.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    2. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.

    More about this item

    Keywords

    ARFIMA; Firth's formula; fractional differencing; approximate modification;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.