IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1334.html
   My bibliography  Save this paper

Higher-order Improvements of the Parametric Bootstrap for Markov Processes

Author

Abstract

This paper provides bounds on the errors in coverage probabilities of maximum likelihood-based, percentile-t, parametric bootstrap confidence intervals for Markov time series processes. These bounds show that the parametric bootstrap for Markov time series provides higher-order improvements (over confidence intervals based on first order asymptotics) that are comparable to those obtained by the parametric and nonparametric bootstrap for iid data and are better than those obtained by the block bootstrap for time series. Additional results are given for Wald-based confidence regions. The paper also shows that k-step parametric bootstrap confidence intervals achieve the same higher-order improvements as the standard parametric bootstrap for Markov processes. The k-step bootstrap confidence intervals are computationally attractive. They circumvent the need to compute a nonlinear optimization for each simulated bootstrap sample. The latter is necessary to implement the standard parametric bootstrap when the maximum likelihood estimator solves a nonlinear optimization problem.

Suggested Citation

  • Donald W.K. Andrews, 2001. "Higher-order Improvements of the Parametric Bootstrap for Markov Processes," Cowles Foundation Discussion Papers 1334, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1334
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d13/d1334.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroyuki Kasahara & Katsumi Shimotsu, 2006. "Nested Pseudo-likelihood Estimation And Bootstrap-based Inference For Structural Discrete Markov Decision Models," Working Paper 1063, Economics Department, Queen's University.
    2. Nankervis, John C., 2005. "Computational algorithms for double bootstrap confidence intervals," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 461-475, April.

    More about this item

    Keywords

    Asymptotics; Edgeworth expansion; Gauss-Newton; k-step bootstrap; maximum likelihood estimator; Newton-Raphson; parametric bootstrap; t statistic;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.