IDEAS home Printed from https://ideas.repec.org/p/cvh/coecwp/2014-02.html
   My bibliography  Save this paper

A new epistemic model

Author

Listed:
  • Pintér, Miklós

Abstract

Meier (2012) gave a "mathematical logic foundation" of the purely measurable universal type space (Heifetz and Samet, 1998). The mathematical logic foundation, however, discloses an inconsistency in the type space literature: a finitary language is used for the belief hierarchies and an infinitary language is used for the beliefs. In this paper we propose an epistemic model to fix the inconsistency above. We show that in this new model the universal knowledgebelief space exists, is complete and encompasses all belief hierarchies. Moreover, by examples we demonstrate that in this model the players can agree to disagree Aumann (1976)'s result does not hold, and Aumann and Brandenburger (1995)'s conditions are not sufficient for Nash equilibrium. However, we show that if we substitute selfevidence (Osborne and Rubinstein, 1994) for common knowledge, then we get at that both Aumann (1976)'s and Aumann and Brandenburger (1995)'s results hold.

Suggested Citation

  • Pintér, Miklós, 2014. "A new epistemic model," Corvinus Economics Working Papers (CEWP) 2014/02, Corvinus University of Budapest.
  • Handle: RePEc:cvh:coecwp:2014/02
    as

    Download full text from publisher

    File URL: https://unipub.lib.uni-corvinus.hu/1530/
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Incomplete information game; Agreeing to disagree; Nash equilibrium; Epistemic game theory; Knowledge-belief space; Belief hierarchy; Common knowledge; Self-evidence; Nash equilibrium;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cvh:coecwp:2014/02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Hoffmann (email available below). General contact details of provider: https://edirc.repec.org/data/bkeeehu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.