IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws045114.html
   My bibliography  Save this paper

Image estimators based on marked bins

Author

Listed:
  • Baíllo, Amparo
  • Cuevas, Antonio

Abstract

The problem of approximating an "image" S in R^d from a random sample of points is considered. If S is included in a grid of square bins, a plausible estimator of S is defined as the union of the "marked" bins (those containing a sample point). We obtain convergence rates for this estimator and study its performance in the approximation of the border of S. The estimation of "digitalized" images is also addressed by using a Vapnik-Chervonenkis approach. The practical aspects of implementation are discussed in some detail, including some technical improvements on the estimator, whose performance is checked through simulated as well as real data examples.

Suggested Citation

  • Baíllo, Amparo & Cuevas, Antonio, 2004. "Image estimators based on marked bins," DES - Working Papers. Statistics and Econometrics. WS ws045114, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws045114
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/10cf87ba-239b-44f4-afc1-ab33f5bdb0d6/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klemelä, Jussi, 2004. "Complexity penalized support estimation," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 274-297, February.
    2. Cuevas, Antonio & Fraiman, Ricardo, 1998. "On visual distances in density estimation: the Hausdorff choice," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 333-341, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biau, Gérard & Cadre, Benoît & Pelletier, Bruno, 2008. "Exact rates in density support estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2185-2207, November.
    2. Manté, Claude, 2015. "Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 68-84.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws045114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.