IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws011107.html
   My bibliography  Save this paper

New in-sample prediction errors in time series with applications

Author

Listed:
  • Sánchez, Ismael

Abstract

^aThis article introduces two new types of prediction errors in time series: the filtered prediction errors and the deletion prediction errors. These two prediction errors are obtained in the same sample used for estimation, but in such a way that they share some common properties with out of sample prediction errors. It is proved that the filtered prediction errors are uncorrelated, up to terms of magnitude order O(T^-2), with the in sample innovations, a property that share with the out-of-sample prediction errors. On the other hand, deletion prediction errors assume that the values to be predicted are unobserved, a property that they also share with out-of-sample prediction errors. It is shown that these prediction errors can be computed with parameters estimated by assuming innovative or additive outliers, respectively, at the points to be predicted. Then the prediction errors are obtained by running the procedure for all the points in the sample of data. Two applications of these new prediction errors are presented. The first is the estimation and comparison of the prediction mean squared errors of competing predictors. The second is the determination of the order of an ARMA model. In the two applications the proposed filtered prediction errors have some advantages over alternative existing methods..

Suggested Citation

  • Sánchez, Ismael, 2001. "New in-sample prediction errors in time series with applications," DES - Working Papers. Statistics and Econometrics. WS ws011107, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws011107
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/94b7dbbf-7d00-4c66-98e8-d1341fca1a74/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    2. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    3. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    4. Pena, Daniel, 1990. "Influential Observations in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 235-241, April.
    5. John Haslett, 1999. "A Simple Derivation of Deletion Diagnostic Results for the General Linear Model with Correlated Errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 603-609.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    8. Koreisha, Sergio G & Pukkila, Tarmo, 1995. "A Comparison between Different Order-Determination Criteria for Identification of ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 127-131, January.
    9. Ashley, Richard, 1998. "A new technique for postsample model selection and validation," Journal of Economic Dynamics and Control, Elsevier, vol. 22(5), pages 647-665, May.
    10. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    11. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    12. John Haslett & Kevin Hayes, 1998. "Residuals for the linear model with general covariance structure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 201-215.
    13. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    2. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    3. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    4. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    5. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    6. Todd E. Clark & Michael W. McCracken, 2002. "Forecast-based model selection in the presence of structural breaks," Research Working Paper RWP 02-05, Federal Reserve Bank of Kansas City.
    7. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    8. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    9. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    10. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    11. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223.
    12. Richard A. Ashley & Kwok Ping Tsang, 2014. "Credible Granger-Causality Inference with Modest Sample Lengths: A Cross-Sample Validation Approach," Econometrics, MDPI, vol. 2(1), pages 1-20, March.
    13. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    14. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    15. Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017. "Robust Forecast Comparison," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
    16. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    17. Michael P. Clements & David I. Harvey, 2010. "Forecast encompassing tests and probability forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 1028-1062.
    18. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
    19. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    20. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws011107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.