IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/4545.html
   My bibliography  Save this paper

Which univariate time series model predicts quicker a crisis? The Iberia case

Author

Listed:
  • Lorenzo, Fernando

Abstract

In this paper four univariate models are fitted to monthly observations of the number of passengers in the Spanish airline IBERIA from January 1985 to October 1994. During the first part of the sample, the series shows an upward trend which has a rupture during 1990 with the slope changing to be negative. The series is also characterized by having seasonal variations. We fit a deterministic components model, the Holt-Winters algorithm, an ARIMA model and a structural time series model to the observations up to December 1992. Then we predict with each ofthe models and compare predicted with observed values. As expected, the results show that the detenninistic model is too rigid in this situation even if the within-sample fit is even better than for any of the other models considered. With respect to Holt-Winters predictions, they faH because they are not able to accornmodate outliers. Finally, ARIMA and structural models are shown to have very similar prediction performance, being flexible enough to predict reasonably well when there are changes in trend.

Suggested Citation

  • Lorenzo, Fernando, 1996. "Which univariate time series model predicts quicker a crisis? The Iberia case," DES - Working Papers. Statistics and Econometrics. WS 4545, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:4545
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/6341d46f-f147-4d4a-a069-6e5e206b7daf/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    2. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    3. Ansley, Craig F, 1983. "Forecasting Economic Time Series with Structural and Box-Jenkins Models: A Case Study: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 307-309, October.
    4. Robert F. Engle, 1978. "Estimating Structural Models of Seasonality," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 281-308, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    2. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    3. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    4. Ali Dib & Mohamed Gammoudi & Kevin Moran, 2008. "Forecasting Canadian time series with the New Keynesian model," Canadian Journal of Economics, Canadian Economics Association, vol. 41(1), pages 138-165, February.
    5. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    6. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223.
    7. West, Kenneth D., 2001. "Encompassing tests when no model is encompassing," Journal of Econometrics, Elsevier, vol. 105(1), pages 287-308, November.
    8. Thomas A. Knetsch, 2005. "Evaluating the German Inventory Cycle Using Data from the Ifo Business Survey," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 61-92, Springer.
    9. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    10. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    11. Matheson, Troy D., 2008. "Phillips curve forecasting in a small open economy," Economics Letters, Elsevier, vol. 98(2), pages 161-166, February.
    12. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    13. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    14. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    15. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    16. Michael P. Clements & David I. Harvey, 2010. "Forecast encompassing tests and probability forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 1028-1062.
    17. Ashiya, Masahiro, 2007. "Forecast accuracy of the Japanese government: Its year-ahead GDP forecast is too optimistic," Japan and the World Economy, Elsevier, vol. 19(1), pages 68-85, January.
    18. Zhu, Yinchu & Timmermann, Allan, 2022. "Conditional rotation between forecasting models," Journal of Econometrics, Elsevier, vol. 231(2), pages 329-347.
    19. Wang, Zijun & Bessler, David A, 2002. "The Homogeneity Restriction and Forecasting Performance of VAR-Type Demand Systems: An Empirical Examination of US Meat Consumption," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(3), pages 193-206, April.
    20. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.

    More about this item

    Keywords

    ARIMA models;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:4545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.