IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/3962.html
   My bibliography  Save this paper

Goodness of fit tests in random coefficient regression models

Author

Listed:
  • Delicado, Pedro

Abstract

Random coefficient regressions have been applied in a wide range of fields, from biology to economics, and constitute a common frame for several important statistical models. A nonparametric approach to inference in random coefficient models was initiated by Beran and Hall. In this paper we introduce and study goodness of fit tests for the coefficient distributions; their asymptotic behaviour under the null hypothesis is obtained. We also propose bootstrap resampling strategies to approach these distributions and prove their asymptotic validity using results by Gine and Zinn on bootstrap empirical processes. A simulation study illustrates the properties of these tests.

Suggested Citation

  • Delicado, Pedro, 1994. "Goodness of fit tests in random coefficient regression models," DES - Working Papers. Statistics and Econometrics. WS 3962, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:3962
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/edfea9b8-0fb0-44a2-a380-6196f71b20a3/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yang, R. Y., 1995. "Bayesian Analysis for Random Coefficient Regression Models Using Noninformative Priors," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 283-311, November.
    2. Fischer, N. I. & Mammen, E. & Marron, J. S., 1994. "Testing for multimodality," Computational Statistics & Data Analysis, Elsevier, vol. 18(5), pages 499-512, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Delicado & Juan Romo, 1998. "Constant coefficient tests for random coefficient regression," Economics Working Papers 329, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Tianshun Yan & Changlin Mei, 2017. "A test for a parametric form of the volatility in second-order diffusion models," Computational Statistics, Springer, vol. 32(4), pages 1583-1596, December.
    3. Zhang, Chun-Xia & Mei, Chang-Lin & Zhang, Jiang-She, 2007. "An empirical study of a test for polynomial relationships in randomly right censored regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6543-6556, August.
    4. Delicado, Pedro, 1995. "Random coefficient regressions: parametric goodness of fit tests," DES - Working Papers. Statistics and Econometrics. WS 4199, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    2. Daniel J. Henderson & Christopher F. Parmeter & R. Robert Russell, 2008. "Modes, weighted modes, and calibrated modes: evidence of clustering using modality tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 607-638.
    3. Neumann, G.R. & Lanot, G., 1996. "Measuring Productivity Differences in Equilibrium Search Models," Working Papers 96-08, University of Iowa, Department of Economics.
    4. Clemens Elster & Gerd Wübbeler, 2017. "Bayesian inference using a noninformative prior for linear Gaussian random coefficient regression with inhomogeneous within-class variances," Computational Statistics, Springer, vol. 32(1), pages 51-69, March.
    5. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    6. M. A. Alkhamisi & Ghazi Shukur, 2005. "Bayesian analysis of a linear mixed model with AR(p) errors via MCMC," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 741-755.
    7. Gwowen Shieh & Jack Lee, 2002. "Bayesian Prediction Analysis for Growth Curve Model Using Noninformative Priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 324-337, June.
    8. K. P. Gluschenko, 2023. "Regional Inequality in Russia: Anatomy of Convergence," Regional Research of Russia, Springer, vol. 13(1), pages 1-12, December.
    9. Bhattacharjee, Arnab, 2004. "Estimation in hazard regression models under ordered departures from proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 517-536, October.
    10. Jamie L. Cross & Lennart Hoogerheide & Paul Labonne & Herman K. van Dijk, 2024. "Flexible Negative Binomial Mixtures for Credible Mode Inference in Heterogeneous Count Data from Finance, Economics and Bioinformatics," Tinbergen Institute Discussion Papers 24-056/III, Tinbergen Institute.
    11. Obereder, Andreas & Scherzer, Otmar & Kovac, Arne, 2007. "Bivariate density estimation using BV regularisation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5622-5634, August.
    12. Natarajan, Ranjini, 2001. "On the propriety of a modified Jeffreys's prior for variance components in binary random effects models," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 409-414, February.
    13. Tiee-Jian Wu & Chih-Yuan Hsu & Huang-Yu Chen & Hui-Chun Yu, 2014. "Root $$n$$ n estimates of vectors of integrated density partial derivative functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 865-895, October.
    14. Hajo Holzmann & Sebastian Vollmer, 2008. "A likelihood ratio test for bimodality in two-component mixtures with application to regional income distribution in the EU," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 57-69, February.
    15. Michael Minnotte, 2010. "Mode testing via higher-order density estimation," Computational Statistics, Springer, vol. 25(3), pages 391-407, September.
    16. Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2021. "Bayes estimates of multimodal density features using DNA and Economic Data," Tinbergen Institute Discussion Papers 21-017/III, Tinbergen Institute.
    17. Russell D. Wolfinger & Robert E. Kass, 2000. "Nonconjugate Bayesian Analysis of Variance Component Models," Biometrics, The International Biometric Society, vol. 56(3), pages 768-774, September.

    More about this item

    Keywords

    Goodness of fit;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:3962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.