IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/45978.html
   My bibliography  Save this paper

Improved gradient scaling for score-driven filters with an application to stock market volatility

Author

Listed:
  • Blazsek, Szabolcs
  • Ayala, Astrid

Abstract

Score-driven filters are updated by the scaled gradient of the log-likelihood (LL). The gradient is with respect to a dynamic parameter and the scaling parameter is 1, or the information quantity or its square root in the literature. The information quantity is minus the expected value of the Hessian of the LL with respect to a dynamic parameter, i.e. the Hessianis smoothed using a probability-weighted average for each period. We suggest an alternative approach and scale the gradients using novel Hessian-driven filters, i.e. Hessian smoothing is performed over time. The method can be used for score-driven models in general. We illustrate it for Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity). Weuse Standard & Poor's 500 (S&P 500) data. We show empirical results for in-sample statistical performance from 2015 to 2025, and out-of-sample forecasting performance from 2021 to 2025. We find for the S&P 500 that the Hessian-driven scaling is superior to the existing scaling methods for Beta-t-EGARCH. We find similar results for a Monte Carlo simulation experimentwhere misspecified Beta-t-EGARCH models with constant and Hessian-driven gradient scaling are estimated for returns generated by a Markov-switching (MS) Beta-t-EGARCH. Hessianbased gradient scaling captures regime-switching dynamics better than constant gradient scaling.

Suggested Citation

  • Blazsek, Szabolcs & Ayala, Astrid, 2025. "Improved gradient scaling for score-driven filters with an application to stock market volatility," UC3M Working papers. Economics 45978, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:45978
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/05c388c0-2af4-477c-8ba1-b335cc6b0dca/content
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Dynamic conditional score (DCS);

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:45978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.eco.uc3m.es/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.