IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2017-65.html
   My bibliography  Save this paper

E?ciency of the V-fold model selection for localized bases

Author

Listed:
  • Fabien Navarro

    (CREST;ENSAI)

  • Adrien Saumard

    (CREST;ENSAI)

Abstract

Many interesting functional bases, such as piecewise polynomials or wavelets, are examples of localized bases. We investigate the optimality of V-fold cross-validation and a variant called V-fold penalization in the context of the selection of linear models generated by localized bases in a heteroscedastic framework. It appears that while V-fold cross-validation is not asymptotically optimal when V is ?xed, the V-fold penalization procedure is optimal. Simulation studies are also presented.

Suggested Citation

  • Fabien Navarro & Adrien Saumard, 2017. "E?ciency of the V-fold model selection for localized bases," Working Papers 2017-65, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2017-65
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2017-65.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabien Navarro & Adrien Saumard, 2017. "Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases," Working Papers 2017-67, Center for Research in Economics and Statistics.
    2. Cai, T. Tony & Brown, Lawrence D., 1999. "Wavelet estimation for samples with random uniform design," Statistics & Probability Letters, Elsevier, vol. 42(3), pages 313-321, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Chesneau & Salima El Kolei & Junke Kou & Fabien Navarro, 2019. "Nonparametric estimation in a regression model with additive and multiplicative noise," Papers 1906.07695, arXiv.org, revised Jun 2020.
    2. Chesneau, Christophe, 2007. "Regression with random design: A minimax study," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 40-53, January.
    3. Umberto Amato & Anestis Antoniadis & Italia Feis & Irène Gijbels, 2022. "Penalized wavelet estimation and robust denoising for irregular spaced data," Computational Statistics, Springer, vol. 37(4), pages 1621-1651, September.
    4. Luz M. Gómez & Rogério F. Porto & Pedro A. Morettin, 2021. "Nonparametric regression with warped wavelets and strong mixing processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1203-1228, December.
    5. Oleg Shestakov, 2020. "Wavelet Thresholding Risk Estimate for the Model with Random Samples and Correlated Noise," Mathematics, MDPI, vol. 8(3), pages 1-8, March.
    6. Maarten Jansen & Guy P. Nason & B. W. Silverman, 2009. "Multiscale methods for data on graphs and irregular multidimensional situations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 97-125, January.
    7. Zeng, Jing & Wang, Zhenjun & Chen, Guobin, 2021. "Biological characteristics of energy conversion in carbon fixation by microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Fabien Navarro & Adrien Saumard, 2017. "Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases," Working Papers 2017-67, Center for Research in Economics and Statistics.
    9. Christophe Chesneau & Jalal Fadili, 2012. "Adaptive wavelet estimation of a function in an indirect regression model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 25-46, January.
    10. Michel H. Montoril & Woojin Chang & Brani Vidakovic, 2019. "Wavelet-Based Estimation of Generalized Discriminant Functions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 318-349, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2017-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.