IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2016-13.html
   My bibliography  Save this paper

Oracle inequalities for network models and sparse graphon estimation

Author

Listed:
  • Olga Klopp

    (CREST, MODAL’X, Université Paris Ouest)

  • Alexandre Tsybakov

    (CREST, ENSAE, CNRS)

  • Nicolas Verzelen

    (INRA)

Abstract

Inhomogeneous random graph models encompass many network models such as stochastic block models and latent position models. We consider the problem of statistical estimation of the matrix of connection probabilities based on the observations of the adjacency matrix of the network. Taking the stochastic block model as an approximation, we construct estimators of network connection probabilities – the ordinary block constant least squares estimator, and its restricted version. We show that they satisfy oracle inequalities with respect to the block constant oracle. As a consequence, we derive optimal rates of estimation of the probability matrix. Our results cover the important setting of sparse networks. Another consequence consists in establishing upper bounds on the minimax risks for graphon estimation in the L2 norm when the probability matrix is sampled according to a graphon model. These bounds include an additional term accounting for the “agnostic” error induced by the variability of the latent unobserved variables of the graphon model. In this setting, the optimal rates are influenced not only by the bias and variance components as in usual nonparametric problems but also include the third component, which is the agnostic error. The results shed light on the differences between estimation under the empirical loss (the probability matrix estimation) and under the integrated loss (the graphon estimation).

Suggested Citation

  • Olga Klopp & Alexandre Tsybakov & Nicolas Verzelen, 2016. "Oracle inequalities for network models and sparse graphon estimation," Working Papers 2016-13, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2016-13
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2016-13.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sébastien Gadat & Ioana Gavra & Laurent Risser, 2018. "How to Calculate the Barycenter of a Weighted Graph," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1085-1118, November.
    2. Olga Klopp & Nicolas Verzelen, 2017. "Optimal graphon estimation in cut distance," Working Papers 2017-42, Center for Research in Economics and Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2016-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.