IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/18407.html
   My bibliography  Save this paper

Estimating HANK for Central Banks

Author

Listed:
  • Acharya, Sushant
  • Chen, William
  • Del Negro, Marco
  • Dogra, Keshav
  • Gleich, Aidan
  • Goyal, Shlok
  • Matlin, Ethan
  • Lee, Donggyu
  • Sarfati, Reca
  • Sengupta, Sikata

Abstract

We provide a toolkit for efficient online estimation of heterogeneous agent (HA) New Keynesian (NK) models based on Sequential Monte Carlo methods. We use this toolkit to compare the out-of-sample forecasting accuracy of a prominent HANK model, Bayer et al. (2022), to that of the representative agent (RA) NK model of Smets and Wouters (2007, SW). We find that HANK’s accuracy for real activity variables is notably inferior to that of SW. The results for consumption in particular are disappointing since the main difference between RANK and HANK is the replacement of the RA Euler equation with the aggregation of individual households’ consumption policy functions, which reflects inequality.

Suggested Citation

  • Acharya, Sushant & Chen, William & Del Negro, Marco & Dogra, Keshav & Gleich, Aidan & Goyal, Shlok & Matlin, Ethan & Lee, Donggyu & Sarfati, Reca & Sengupta, Sikata, 2023. "Estimating HANK for Central Banks," CEPR Discussion Papers 18407, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:18407
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP18407
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    • Sushant Acharya & William Chen & Marco Del Negro & Keshav Dogra & Aidan Gleich & Shlok Goyal & Donggyu Lee & Ethan Matlin & Reca Sarfati & Sikata Sengupta, 2023. "Estimating HANK for Central Banks," Staff Reports 1071, Federal Reserve Bank of New York.

    References listed on IDEAS

    as
    1. Greg Kaplan & Benjamin Moll & Giovanni L. Violante, 2018. "Monetary Policy According to HANK," American Economic Review, American Economic Association, vol. 108(3), pages 697-743, March.
    2. Reiter, Michael, 2009. "Solving heterogeneous-agent models by projection and perturbation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 649-665, March.
    3. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
    4. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    5. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    6. Greenwood, Jeremy & Hercowitz, Zvi & Huffman, Gregory W, 1988. "Investment, Capacity Utilization, and the Real Business Cycle," American Economic Review, American Economic Association, vol. 78(3), pages 402-417, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bayer & Benjamin Born & Ralph Luetticke, 2024. "Shocks, Frictions, and Inequality in US Business Cycles," American Economic Review, American Economic Association, vol. 114(5), pages 1211-1247, May.
    2. Boehl, Gregor, 2022. "Efficient solution and computation of models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. Nils M. Gornemann & Keith Kuester & Makoto Nakajima, 2021. "Doves for the Rich, Hawks for the Poor? Distributional Consequences of Systematic Monetary Policy," Opportunity and Inclusive Growth Institute Working Papers 50, Federal Reserve Bank of Minneapolis.
    4. Adrien Auclert & Bence Bardóczy & Matthew Rognlie & Ludwig Straub, 2021. "Using the Sequence‐Space Jacobian to Solve and Estimate Heterogeneous‐Agent Models," Econometrica, Econometric Society, vol. 89(5), pages 2375-2408, September.
    5. Adrien Auclert & Ludwig Straub & Matthew Rognlie, 2019. "Micro Jumps, Macro Humps: monetary policy and business cycles in an estimated HANK model," 2019 Meeting Papers 1449, Society for Economic Dynamics.
    6. Grimaud, Alex, 2021. "Precautionary saving and un-anchored expectations," MPRA Paper 110651, University Library of Munich, Germany.
    7. Givens, Gregory E., 2011. "Unemployment insurance in a sticky-price model with worker moral hazard," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1192-1214, August.
    8. Donggyu Lee, 2024. "Quantitative Easing and Inequality," Staff Reports 1108, Federal Reserve Bank of New York.
    9. Pierre Mabille, 2019. "Aggregate Precautionary Savings Motives," 2019 Meeting Papers 344, Society for Economic Dynamics.
    10. Cai, Michael & Del Negro, Marco & Giannoni, Marc P. & Gupta, Abhi & Li, Pearl & Moszkowski, Erica, 2019. "DSGE forecasts of the lost recovery," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1770-1789.
    11. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    12. Gregor Boehl & Gavin Goy & Felix Strobel, 2024. "A Structural Investigation of Quantitative Easing," The Review of Economics and Statistics, MIT Press, vol. 106(4), pages 1028-1044, July.
    13. Giovanni Angelini & Luca Fanelli, 2016. "Misspecification and Expectations Correction in New Keynesian DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 623-649, October.
    14. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    15. Cristiano Cantore & Vasco J. Gabriel & Paul Levine & Joseph Pearlman & Bo Yang, 2013. "The science and art of DSGE modelling: II – model comparisons, model validation, policy analysis and general discussion," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 19, pages 441-463, Edward Elgar Publishing.
    16. Ralph Luetticke, 2021. "Transmission of Monetary Policy with Heterogeneity in Household Portfolios," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 1-25, April.
    17. Baele, Lieven & Bekaert, Geert & Cho, Seonghoon & Inghelbrecht, Koen & Moreno, Antonio, 2015. "Macroeconomic regimes," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 51-71.
    18. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    19. Cloyne, James S, 2011. "Government spending shocks, wealth effects and distortionary taxes," MPRA Paper 41689, University Library of Munich, Germany.
    20. Inoue, Atsushi & Kuo, Chun-Hung & Rossi, Barbara, 2020. "Identifying the sources of model misspecification," Journal of Monetary Economics, Elsevier, vol. 110(C), pages 1-18.

    More about this item

    Keywords

    Hank; Bayesian inference; Sequential monte carlo methods;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:18407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.