IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/724.html
   My bibliography  Save this paper

A polynomial Newton method for linear programming

Author

Listed:
  • de GHELLINCK, Guy
  • VIAL, Jean-Philippe

Abstract

No abstract is available for this item.

Suggested Citation

  • de GHELLINCK, Guy & VIAL, Jean-Philippe, 1986. "A polynomial Newton method for linear programming," LIDAM Reprints CORE 724, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:724
    DOI: 10.1007/BF01840456
    Note: In : Algorithmica, 1, 425-453, 1986
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    2. Jean-Philippe Vial, 1997. "A path-following version of the Todd-Burrell procedure for linear programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(2), pages 153-167, June.
    3. Gondzio, J. & Sarkissian, R. & Vial, J.-P., 1997. "Using an interior point method for the master problem in a decomposition approach," European Journal of Operational Research, Elsevier, vol. 101(3), pages 577-587, September.
    4. P. Chardaire & A. Lisser, 2002. "Simplex and Interior Point Specialized Algorithms for Solving Nonoriented Multicommodity Flow Problems," Operations Research, INFORMS, vol. 50(2), pages 260-276, April.
    5. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    6. A. Ouorou & P. Mahey & J.-Ph. Vial, 2000. "A Survey of Algorithms for Convex Multicommodity Flow Problems," Management Science, INFORMS, vol. 46(1), pages 126-147, January.
    7. L. M. Graña Drummond & B. F. Svaiter, 1999. "On Well Definedness of the Central Path," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 223-237, August.
    8. Alexandre Belloni, 2008. "Norm-Induced Densities and Testing the Boundedness of a Convex Set," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 235-256, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.