IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2007083.html
   My bibliography  Save this paper

A unified approach to solve ill-posed inverse problems in econometrics

Author

Listed:
  • JOHANNES, Jan
  • VAN BELLEGHEM, Sébastien

    (Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE))

  • VANHEMS, Anne

Abstract

We consider the general issue of estimating a nonparametric function x from the inverse problem r = Tx given estimates of the function r and of the linear transform T. Two typical examples include the estimation of a probability density function fromdata contaminated by a noise whose distribution is unknown (blind deconvolution) and the nonparametric instrumental regression. We provide a unified framework based on Hilbert scales that synthesizes most of existing results in the econometric literature and also covers new relevant structural models. Results are given on the rate of convergence of the estimator of x as well as of its derivatives.

Suggested Citation

  • JOHANNES, Jan & VAN BELLEGHEM, Sébastien & VANHEMS, Anne, 2007. "A unified approach to solve ill-posed inverse problems in econometrics," LIDAM Discussion Papers CORE 2007083, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2007083
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2007.html
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    2. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log‐density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.
    3. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.

    More about this item

    Keywords

    inverse problem; Hilbert scale; deconvolution; instrumental variable; nonparametric regression;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2007083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.