IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2002065.html
   My bibliography  Save this paper

Change-point detection in GARCH models: asymptotic and bootstrap tests

Author

Listed:
  • KOKOSZKA, Piotr
  • TEYSSIÈRE, Gilles

Abstract

Two classes of tests designed to detect changes in volatility are proposed. Procedures based on squared model residuals and on the likelihood ratio are considered. The tests are applicable to parametric nonlinear models like GARCH. Both asymptotic and bootstrap tests are investigated by means of a simulation study and applied to returns data. The tests based onthe likelihood ratio are shown to be generally preferable. A wavelet based estimator of long memory is applied to returns data to shed light on the interplay of change points and long memory.

Suggested Citation

  • KOKOSZKA, Piotr & TEYSSIÈRE, Gilles, 2002. "Change-point detection in GARCH models: asymptotic and bootstrap tests," LIDAM Discussion Papers CORE 2002065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2002065
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2002.html
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirman, Alan & Teyssiere, Gilles, 2005. "Testing for bubbles and change-points," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 765-799, April.
    2. Berkes, Istvan & Horváth, Lajos & Kokoszka, Piotr, 2004. "Testing for parameter constancy in GARCH(p,q) models," Statistics & Probability Letters, Elsevier, vol. 70(4), pages 263-273, December.
    3. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
    5. de Pooter, M.D. & van Dijk, D.J.C., 2004. "Testing for changes in volatility in heteroskedastic time series - a further examination," Econometric Institute Research Papers EI 2004-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Keywords

    GARCH model; change-point; likelihood ratio; parametric bootstrap; squared residuals; size-power curves; wavelets;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2002065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.