IDEAS home Printed from https://ideas.repec.org/p/com/wpaper/021.html
   My bibliography  Save this paper

Portfolio Decisions with Higher Order Moments

Author

Listed:
  • P. M. Kleniati
  • Berc Rustem

Abstract

In this paper, we address the global optimization of two interesting nonconvex problems in finance. We relax the normality assumption underlying the classical Markowitz mean-variance portfolio optimization model and consider the incorporation of skewness (third moment) and kurtosis (fourth moment). The investor seeks to maximize the expected return and the skewness of the portfolio and minimize its variance and kurtosis, subject to budget and no short selling constraints. In the first model, it is assumed that asset statistics are exact. The second model allows for uncertainty in asset statistics. We consider rival discrete estimates for the mean, variance, skewness and kurtosis of asset returns. A robust optimization framework is adopted to compute the best investment portfolio maximizing return, skewness and minimizing variance, kurtosis, in view of the worst-case asset statistics. In both models, the resulting optimization problems are nonconvex. We introduce a computational procedure for their global optimization.

Suggested Citation

  • P. M. Kleniati & Berc Rustem, 2009. "Portfolio Decisions with Higher Order Moments," Working Papers 021, COMISEF.
  • Handle: RePEc:com:wpaper:021
    as

    Download full text from publisher

    File URL: http://comisef.eu/files/wps021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    2. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    3. Rodríguez, Mª Araceli, 2005. "Nueva Evidencia Empírica sobre las Turbulencias Cambiarias de la Peseta Española. 1989-1998/New Evidence about Turbulences on the Spanish Peseta. 1989-1998s," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 23, pages 207-230, Abril.
    4. Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
    5. Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang, 2022. "Predicting returns and dividend growth — The role of non-Gaussian innovations," Finance Research Letters, Elsevier, vol. 46(PA).
    6. Pouchkarev, I & Spronk, J. & Trinidad Segovia, J.E., 2004. "Dynamics of the Spanish Stock Market Through a Broadband View of the IBEX 35® index / Dinámica del mercado de capitales español a través de una visión amplia del índice IBEX 35®," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 22, pages 7-21, Abril.
    7. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    10. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    11. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
    12. Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
    13. Wu, C.C. & Lee, Jack C., 2007. "Estimation of a utility-based asset pricing model using normal mixture GARCH(1,1)," Economic Modelling, Elsevier, vol. 24(2), pages 329-349, March.
    14. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    15. Shige Makino & Christine M. Chan, 2017. "Skew and heavy-tail effects on firm performance," Strategic Management Journal, Wiley Blackwell, vol. 38(8), pages 1721-1740, August.
    16. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    17. Wan, Li & Han, Liyan & Xu, Yang & Matousek, Roman, 2021. "Dynamic linkage between the Chinese and global stock markets: A normal mixture approach," Emerging Markets Review, Elsevier, vol. 49(C).
    18. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
    19. Harris, Richard D.F. & Nguyen, Linh H. & Stoja, Evarist, 2019. "Systematic extreme downside risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 128-142.
    20. Sanjiv Jaggia & Alison Kelly-Hawke, 2009. "Modelling skewness and elongation in financial returns: the case of exchange-traded funds," Applied Financial Economics, Taylor & Francis Journals, vol. 19(16), pages 1305-1316.

    More about this item

    Keywords

    Mean-variance portfolio selection; Robust portfolio selection; Skewness; Kurtosis; Decomposition methods; Polynomial optimization problems;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:com:wpaper:021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anil Khuman (email available below). General contact details of provider: http://www.comisef.eu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.