IDEAS home Printed from https://ideas.repec.org/p/col/000122/010934.html
   My bibliography  Save this paper

Quantifying slumness with remote sensing data

Author

Listed:
  • Juan C. Duque
  • Jorge E. Patino
  • Luis A. Ruiz
  • Josep E. Pardo-Pascual

Abstract

The presence of slums in a city is an indicator of poverty and its proper delimitation is a matter of interest for researchers and policy makers. Socio-economic data from surveys and censuses are the primary source of information to identify and quantify slumness within a city or a town. One problem of using survey data for quantifying slumness is that this type of data is usually collected every ten years and is an expensive and time consuming process. Based on the premise that the physical appearance of an urban settlement is a reflection of the society that created it and on the assumption that people living in urban areas with similar physical housing conditions will have similar social and demographic characteristics (Jain, 2008; Taubenb¨ock et al., 2009b); this paper uses data from Medellin City, Colombia, to estimate slum index using solely remote sensing data from an orthorectified, pan-sharpened, natural color Quickbird scene. For Medellin city, the percentage of clay roofs cover and the mean swimming pool density at the analytical region level can explain up to 59% of the variability in the slum index. Structure and texture measures are useful to characterize the differences in the homogeneity of the spatial pattern of the urban layout and they improve the explanatory power of the statistical models when taken into account. When no other information is used, they can explain up to 30% of the variability of the slum index. The results of this research are encouraging and many researchers, urban planners and policy makers could benefit from this rapid and low cost approach to characterize the intra-urban variations of slumness in cities with sparse data or no data at all.

Suggested Citation

  • Juan C. Duque & Jorge E. Patino & Luis A. Ruiz & Josep E. Pardo-Pascual, 2013. "Quantifying slumness with remote sensing data," Documentos de Trabajo de Valor Público 10934, Universidad EAFIT.
  • Handle: RePEc:col:000122:010934
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-Suaza, Andres & Varela, Daniela, 2024. "Nightlight, landcover and buildings: understanding intracity socioeconomic differences," Documentos de Trabajo 21025, Universidad del Rosario.

    More about this item

    Keywords

    Regional Science; Remote Sensing; Slum; GEOBIA;
    All these keywords.

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000122:010934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valor Público EAFIT - Centro de estudios e incidencia (email available below). General contact details of provider: https://edirc.repec.org/data/cieafco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.