IDEAS home Printed from https://ideas.repec.org/p/col/000118/016050.html
   My bibliography  Save this paper

Pronósticos para la tasa de desempleo en Colombia a partir de Google Trends

Author

Listed:
  • Luisa Fernanda CARDONA ROJAS
  • Javier Andrés ROJAS AGUILERA

Abstract

Este trabajo propone utilizar la información de la plataforma Google Trends para mejorar las predicciones de corto plazo para la tasa de desempleo en Colombia. Para esto, se seleccionan los términos de búsqueda de Google Trends que más se relacionan con la tasa de desempleo, siguiendo un criterio de correlación simple y de coherencia media entre estas series. Una vez seleccionados los términos, se estiman modelos de regresión lineal simple, modelos autoregresivos integrados de media móvil (ARIMA) y su versión ampliada por variables exógenas (ARIMAX). Se encuentra que el volumen de consultas mejora el ajuste de los modelos y en particular que las búsquedas de los términos “Trabajo”, “Ofertas de trabajo” y “Busco trabajo” mejoran los pronósticos del comportamiento del mercado laboral.

Suggested Citation

  • Luisa Fernanda CARDONA ROJAS & Javier Andrés ROJAS AGUILERA, 2017. "Pronósticos para la tasa de desempleo en Colombia a partir de Google Trends," Archivos de Economía 16050, Departamento Nacional de Planeación.
  • Handle: RePEc:col:000118:016050
    as

    Download full text from publisher

    File URL: https://colaboracion.dnp.gov.co/CDT/Estudios%20Econmicos/468.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Desempleo; Google Trends; regresiones dinámicas; ARIMA;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000118:016050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carlos Fernando Rincon Rojas (email available below). General contact details of provider: https://edirc.repec.org/data/dnpgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.