IDEAS home Printed from https://ideas.repec.org/p/col/000089/019421.html
   My bibliography  Save this paper

Inteligencia Artificial para Detectar Corrupción en la Administración Pública Municipal de Colombia

Author

Listed:
  • Kevin Steven Mojica Munoz

Abstract

Esta investigación busca evaluar el uso de algoritmos de aprendizaje de máquinas en la detección temprana de actos de corrupción en la administración pública municipal de Colombia. Esto se desarrolla a partir de dos enfoques: (i) una evaluación de algoritmos de aprendizaje supervisado para la predicción directa de variables relacionadas con la corrupción y, (ii) una evaluación de aprendizaje no supervisado para la segmentación de riesgo relativo de corrupción. Los resultados indican que, pese a que se obtienen resultados satisfactorios en la evaluación de aprendizaje supervisado, el aprendizaje no supervisado se per la como la herramienta más útil para la detección temprana de corrupción municipal en Colombia. A partir de estos hallazgos, se crea un Índice de Riesgo Relativo de Corrupción Municipal para el periodo 2020-2023. Este índice busca servir a los organismos de control en la focalización de sus esfuerzos de investigación y prevención de la corrupción.

Suggested Citation

  • Kevin Steven Mojica Munoz, 2021. "Inteligencia Artificial para Detectar Corrupción en la Administración Pública Municipal de Colombia," Documentos CEDE 19421, Universidad de los Andes, Facultad de Economía, CEDE.
  • Handle: RePEc:col:000089:019421
    as

    Download full text from publisher

    File URL: https://repositorio.uniandes.edu.co/bitstream/handle/1992/50541/dcede2021-31.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Corrupción; Aprendizaje de Máquinas; Administración Pública.;
    All these keywords.

    JEL classification:

    • D73 - Microeconomics - - Analysis of Collective Decision-Making - - - Bureaucracy; Administrative Processes in Public Organizations; Corruption
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • H70 - Public Economics - - State and Local Government; Intergovernmental Relations - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000089:019421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Universidad De Los Andes-Cede (email available below). General contact details of provider: https://edirc.repec.org/data/ceandco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.