IDEAS home Printed from https://ideas.repec.org/p/cnb/wpaper/2023-13.html
   My bibliography  Save this paper

A Sparse Kalman Filter: A Non-Recursive Approach

Author

Listed:
  • Michal Andrle
  • Jan Bruha

Abstract

We propose an algorithm to estimate unobserved states and shocks in a state-space model under sparsity constraints. Many economic models have a linear state-space form - for example, linearized DSGE models, VARs, time-varying VARs, and dynamic factor models. Under the conventional Kalman filter, which is essentially a recursive OLS algorithm, all estimated shocks are non-zero. However, the true shocks are often zero for multiple periods, and non-zero estimates are due to noisy data or ill-conditioning of the model. We show applications where sparsity is the natural solution. Sparsity of filtered shocks is achieved by applying an elastic-net penalty to the least-squares problem and improves statistical efficiency. The algorithm can be adapted for non-convex penalties and for estimates robust to outliers.

Suggested Citation

  • Michal Andrle & Jan Bruha, 2023. "A Sparse Kalman Filter: A Non-Recursive Approach," Working Papers 2023/13, Czech National Bank.
  • Handle: RePEc:cnb:wpaper:2023/13
    as

    Download full text from publisher

    File URL: https://www.cnb.cz/export/sites/cnb/en/economic-research/.galleries/research_publications/cnb_wp/cnbwp_2023_13.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Kalman filter; regularization; sparsity;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cnb:wpaper:2023/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jan Babecky (email available below). General contact details of provider: https://edirc.repec.org/data/cnbgvcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.