IDEAS home Printed from https://ideas.repec.org/p/cir/cirpro/2021rp-15.html
   My bibliography  Save this paper

Analyse du marché du travail à l’aide des données de Google Trends

Author

Listed:
  • Hugo Couture
  • Dalibor Stevanovic

Abstract

In this report, we evaluate the relevance of weekly Google search query data for current and next month prediction on several labour market variables in Canada and Quebec. Several types of mixed-frequency models are considered and their performance is evaluated in an out-of-sample forecasting exercise spanning the period 2014M09 - 2019M09. Google Trends improve the accuracy of forecasts of the employment rate, hours worked and unemployment rate. The availability of this data in high frequency is crucial. Their contribution is important especially during the first two weeks of the month, so when Labor Force Survey data are not yet available for the last month. Dans ce rapport, nous évaluons la pertinence des données hebdomadaires des requêtes faites sur le moteur de recherche de Google au niveau de la prédiction du mois courant et du prochain mois sur plusieurs variables du marché d’emploi au Canada et au Québec. Plusieurs types de modèles en fréquence mixte sont considérés et leur performance est évaluée dans un exercice de prévision hors échantillon s’étalant sur la période 2014M09 - 2019M09. Les Google Trends améliorent la précision des prévisions du taux d’emploi, des heures travaillées et du taux de chômage. La disponibilité de ces données en haute fréquence est cruciale. Leur apport est important surtout durant les deux premières semaines du mois, donc lorsque les données de l’Enquête sur la population active ne sont pas encore disponibles pour le dernier mois.

Suggested Citation

  • Hugo Couture & Dalibor Stevanovic, 2021. "Analyse du marché du travail à l’aide des données de Google Trends," CIRANO Project Reports 2021rp-15, CIRANO.
  • Handle: RePEc:cir:cirpro:2021rp-15
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2021RP-15.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Forecasting; Macroeconomics; Job market; Google Trends; Machine Learning; Prévision; Macroéconomie; Marché d’emploi; Google Trends; Machine Learning;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirpro:2021rp-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.