IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp20103.html
   My bibliography  Save this paper

Forecasting Financial Crashes: A Dynamic Risk Management Approach

Author

Listed:
  • J-C Gerlach

    (ETH Zürich - Department of Management, Technology, and Economics (D-MTEC))

  • Dongshuai Zhao, CFA

    (ETH Zürich - Department of Management, Technology, and Economics (D-MTEC))

  • Didier Sornette

    (ETH Zürich - Department of Management, Technology, and Economics (D-MTEC); S wiss Finance Institute; Southern University of Science and Technology; Tokyo Institute of Technology)

Abstract

Since 2009, stock markets have resided in a long bull market regime. Passive investment strategies have succeeded during this low-volatility growth period. From 2018 on, however, there was a transition into a more volatile market environment interspersed by corrections increasing in amplitude and frequency. This calls for more adaptive dynamic risk management strategies, as opposed to static buy-and-hold strategies. To hedge against market drawdowns, the greatest source of risk that should accurately be estimated is crash risk. This article applies the Log-Periodic Power Law Singularity (LPPLS) model of endogenous asset price bubbles to monitor crash risk. The model is calibrated to 15 years market history for five relevant equity country indices. Particular emphasis is put on the US S&P 500 Composite Index and the recent market history of the "Corona" year 2020. The results show that relevant historical bubble events, including the Corona crash, could be detected with the model and derived indicators. Many of these events were predicted in advance in monthly reports by the Financial Crisis Observatory (FCO) at ETH Zurich. The Corona crash, as the most recent event of interest, is discussed in further detail. Our conclusion is that unsustainable price dynamics leading to an unstable bubble, fuelled by quantitative easing and other policies, already existed well before the pandemic started. Thus, the bubble bursting in February 2020 as a reaction to the Corona pandemic was of endogenous nature and burst in response to the exogenous Corona crisis, which was predictable to some degree based on the endogenous price dynamics. Following the crash, a fast recovery of the price to pre-crisis levels ensued in the following months. This lets us conclude that, as long as the underlying origins and the macroeconomic environment that created this bubble do not change, the bubble will continue to grow and potentially spread to other sectors. This may cause even more hectic market behaviour, overreaction and volatile corrections in the future.

Suggested Citation

  • J-C Gerlach & Dongshuai Zhao, CFA & Didier Sornette, 2020. "Forecasting Financial Crashes: A Dynamic Risk Management Approach," Swiss Finance Institute Research Paper Series 20-103, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp20103
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3744816
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Financial Bubbles; Crashes; Forecasting; LPPLS Model; Dynamic Risk Management; Confidence Indicator;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G01 - Financial Economics - - General - - - Financial Crises
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp20103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.