IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1809.html
   My bibliography  Save this paper

Asian Option Pricing with Orthogonal Polynomials

Author

Listed:
  • Sander Willems

    (Ecole Polytechnique Fédérale de Lausanne and Swiss Finance Institute)

Abstract

In this paper we derive a series expansion for the price of a continuously sampled arithmetic Asian option in the Black-Scholes setting. The expansion is based on polynomials that are orthogonal with respect to the log-normal distribution. All terms in the series are fully explicit and no numerical integration nor any special functions are involved. We provide sufficient conditions to guarantee convergence of the series. We address the moment indeterminacy of the log-normal distribution and numerically investigate its impact on the asymptotic behavior of the series.

Suggested Citation

  • Sander Willems, 2018. "Asian Option Pricing with Orthogonal Polynomials," Swiss Finance Institute Research Paper Series 18-09, Swiss Finance Institute, revised Feb 2018.
  • Handle: RePEc:chf:rpseri:rp1809
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3112144
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damir Filipovi'c & Sander Willems, 2018. "A Term Structure Model for Dividends and Interest Rates," Papers 1803.02249, arXiv.org, revised May 2020.

    More about this item

    Keywords

    Asian Option; Option Pricing; Orthogonal Polynomials;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.