IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1462.html
   My bibliography  Save this paper

Martingale Optimal Transport in the Skorokhod Space

Author

Listed:
  • Yan DOLINSKY

    (Hebrew University of Jerusalem)

  • Mete SONER

    (ETH Zurich and Swiss Finance Institute)

Abstract

The dual representation of the martingale optimal transport problem in the Skorokhod space of multi dimensional cadlag processes is proved. The dual is a minimization problem with constraints involving stochastic integrals and is similar to the Kantorovich dual of the standard optimal transport problem. The constraints are required to hold for every path in the Skorokhod space. This problem has the financial interpretation as the robust hedging of path dependent European options.

Suggested Citation

  • Yan DOLINSKY & Mete SONER, 2014. "Martingale Optimal Transport in the Skorokhod Space," Swiss Finance Institute Research Paper Series 14-62, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1462
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=2512292
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    2. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2014. "Robust Fundamental Theorem for Continuous Processes," Papers 1410.4962, arXiv.org, revised Jul 2015.
    3. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    4. Anna Aksamit & Zhaoxu Hou & Jan Obl'oj, 2016. "Robust framework for quantifying the value of information in pricing and hedging," Papers 1605.02539, arXiv.org, revised Mar 2018.
    5. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem for Continuous Processes," Post-Print hal-01076062, HAL.
    6. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2015. "Model-free Superhedging Duality," Papers 1506.06608, arXiv.org, revised May 2016.
    7. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Tightness and duality of martingale transport on the Skorokhod space," Papers 1507.01125, arXiv.org, revised Aug 2016.
    8. Marcel Nutz, 2014. "Robust Superhedging with Jumps and Diffusion," Papers 1407.1674, arXiv.org, revised Jul 2015.
    9. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644, arXiv.org, revised Jul 2016.
    10. Yan Dolinsky & H. Mete Soner, 2015. "Convex duality with transaction costs," Papers 1502.01735, arXiv.org, revised Oct 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.