IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1022.html
   My bibliography  Save this paper

Replicating Hedge Fund Indices with Optimization Heuristics

Author

Listed:
  • Manfred GILLI

    (University of Geneva and Swiss Finance Institute)

  • Enrico SCHUMANN

    (University of Geneva)

  • Gerda CABEJ

    (University of Geneva)

  • Jonela LULA

    (University of Geneva)

Abstract

Hedge funds offer desirable risk-return profiles; but we also find high management fees, lack of transparency and worse, very limited liquidity (they are often closed to new investors and disinvestment fees can be prohibitive). This creates an incentive to replicate the attractive features of hedge funds using liquid assets. We investigate this replication problem using monthly data of CS Tremont for the period of 1999 to 2009. Our model uses historical observations and combines tracking accuracy, excess return, and portfolio correlation with the index and the market. Performance is evaluated considering empirical distributions of excess return, final wealth and correlations of the portfolio with the index and the market. The distributions are compiled from a set of portfolio trajectories computed by a resampling procedure. The nonconvex optimization problem arising from our model specification is solved with a heuristic optimization technique. Our preliminary results are encouraging as we can track the indices accurately and enhance performance (e.g. have lower correlation with equity markets).

Suggested Citation

  • Manfred GILLI & Enrico SCHUMANN & Gerda CABEJ & Jonela LULA, 2010. "Replicating Hedge Fund Indices with Optimization Heuristics," Swiss Finance Institute Research Paper Series 10-22, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1022
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=1623735
    Download Restriction: no

    File URL:
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Reza Tavakoli Baghdadabad & Paskalis Glabadanidis, 2013. "Average Drawdown Risk and Capital Asset Pricing," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-21.
    2. Willi Semmler & Raphaƫle Chappe, 2011. "The Operation of Hedge Funds: Econometric Evidence, Dynamic Modeling, and Regulatory Perspectives," Palgrave Macmillan Books, in: Greg N. Gregoriou & Razvan Pascalau (ed.), Financial Econometrics Modeling: Derivatives Pricing, Hedge Funds and Term Structure Models, chapter 1, pages 3-34, Palgrave Macmillan.

    More about this item

    Keywords

    Hedge Funds; Hedge Fund Replication; Asset Allocation; Portfolio Optimization; Optimization Heuristics; Drawdown;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.