IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1008.html
   My bibliography  Save this paper

Reverse Engineering Financial Markets with Majority and MinorityGames using Genetic Algorithms

Author

Listed:
  • Judith WIESINGER

    (ETH Zurich)

  • Didier SORNETTE

    (ETH Zurich and Swiss Finance Institute)

  • Jeffrey SATINOVER

    (ETH Zurich)

Abstract

Using virtual stock markets with artificial interacting software in- vestors, aka agent-based models (ABMs), we present a method to reverse engineer real-world financial time series. We model financial markets as made of a large number of interacting boundedly rational agents. By op- timizing the similarity between the actual data and that generated by the reconstructed virtual stock market, we obtain parameters and strategies, which reveal some of the inner workings of the target stock market. We validate our approach by out-of-sample predictions of directional moves of the Nasdaq Composite Index.

Suggested Citation

  • Judith WIESINGER & Didier SORNETTE & Jeffrey SATINOVER, 2010. "Reverse Engineering Financial Markets with Majority and MinorityGames using Genetic Algorithms," Swiss Finance Institute Research Paper Series 10-08, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1008
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=1553821
    Download Restriction: no

    File URL:
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, G. & Chen, Y. & Huang, J.P., 2016. "The highly intelligent virtual agents for modeling financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 98-108.
    2. Krause, Sebastian M. & Bornholdt, Stefan, 2013. "Spin models as microfoundation of macroscopic market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4048-4054.

    More about this item

    Keywords

    reverse-engineering; financial markets; agent-based models; genetic algorithms; forecast; trading strategies; market regimes;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.