Author
Listed:
- Taiga Saito
(Graduate School of Economics, University of Tokyo)
- Akihiko Takahashi
(Graduate School of Economics, University of Tokyo)
- Noriaki Koide
(Joint Support-Center for Data Science Research, Research Organization of Information and systems)
- Yu Ichifuji
(Center for Information and Communication Technology, Nagasaki University)
Abstract
This paper presents an application of online booking data, comprised of big data crawled from a hotel booking website to hotel revenue management. It is important to build a quantitative revenue management method for online hotel booking systems incorporating overbooking strategies, because of increasing numbers of bookings through online booking websites and last-minute cancellations, which cause serious damage to hotel management. We construct a quantitative overbooking model for online booking systems combined with customers' choice behaviors estimated from the data. Firstly, we present the overbooking model for online booking systems. Secondly, we estimate the choice behaviors of the customers from the online booking data by a discrete choice model. Thirdly, combining the estimated discrete choice model with the theoretical overbooking model, we investigate the expected sales maximization problem where we numerically solve the optimal overbooking level and room charge. Finally, we provide numerical examples of the optimal overbooking strategies and room charges using online booking data of two major luxury hotels in Shinjuku ward, Tokyo. This method, which utilizes online booking data available by crawling from booking websites, helps hotels obtain an optimal room charge and overbooking level maximizing the expected sales.
Suggested Citation
Taiga Saito & Akihiko Takahashi & Noriaki Koide & Yu Ichifuji, 2018.
"Application of Online Booking Data to Hotel Revenue Management (Forthcoming in International Journal of Information Management),"
CARF F-Series
CARF-F-448, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
Handle:
RePEc:cfi:fseres:cf448
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf448. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.