IDEAS home Printed from https://ideas.repec.org/p/cep/stitep/247.html
   My bibliography  Save this paper

Localization of Closedness and Continuity Properties, with Applications to Preferences and Production Sets - (Now published as 'Localisation of continuity to bounded sets for nonmetrisable vector topologies and its applications to economic equilibrium theory', in Indagationes Mathematicae (New Series), 11 (2000), pp.53-61.)

Author

Listed:
  • Anthony Horsley
  • Andrew J Wrobel

Abstract

Localization techniques which facilitate verification of the topological properties of sets, functions and correspondences needed for equilibrium analysis in infinite-dimensional spaces are given. For example, it is shown that weak* upper semicontinuity (w*-u.s.c.) of a concave function (or a convex preorder) on the dual , L, of a separable Banach space, L, is equivalent to bounded w*-u.s.c. and therefore to sequential w*-u.s.c. For nondecreasing functions defined on bounded-from-below subsets of topological vector lattices, the property of lower semicontinuity can also be 'localized' to bounded regions, which in the case of L = L? with the Mackay topology leads to characterization in terms of sequences through the introduction of convergence measure. To illustrate the simplification this affords, Bewley's Mackey integration theory; some other uses are sketched or referred to.

Suggested Citation

  • Anthony Horsley & Andrew J Wrobel, 1992. "Localization of Closedness and Continuity Properties, with Applications to Preferences and Production Sets - (Now published as 'Localisation of continuity to bounded sets for nonmetrisable vector topo," STICERD - Theoretical Economics Paper Series 247, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stitep:247
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stitep:247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.