IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/336.html
   My bibliography  Save this paper

Large-Sample Inference for Nonparametric Regression with Dependent Errors - (Now published in 'Annals of Statistics', 28 (1997), pp.2054-2083.)

Author

Listed:
  • Peter M Robinson

Abstract

A central limit theorem is given for certain weighted sums of a covariance stationary process, assuming it is linear in martingale differences, but without any restriction on its spectrum. We apply the result to kernel nonparametric fixed-design regression, giving a single central limit theorem which indicates how error spectral behaviour at only zero frequency influences the asymptotic distribution, and covers long range, short range, and negative dependence. We show how the regression estimates can be studentized in the absence of previous knowledge of which form of dependence regime pertains, and show also that a simpler studentization is possible when long-range dependence can be taken for granted.

Suggested Citation

  • Peter M Robinson, 1997. "Large-Sample Inference for Nonparametric Regression with Dependent Errors - (Now published in 'Annals of Statistics', 28 (1997), pp.2054-2083.)," STICERD - Econometrics Paper Series 336, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:336
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robinson, Peter, 2008. "Inference on nonparametrically trending time series with fractional errors," LSE Research Online Documents on Economics 25471, London School of Economics and Political Science, LSE Library.
    2. Peter M Robinson, 2004. "ROBUST COVARIANCE MATRIX ESTIMATION: "HAC" Estimates with Long Memory/Antipersistence Correction," STICERD - Econometrics Paper Series 471, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Robinson, Peter M., 2004. "Robust covariance matrix estimation : HAC estimates with long memory/antipersistence correction," LSE Research Online Documents on Economics 2157, London School of Economics and Political Science, LSE Library.
    4. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    5. Peter M Robinson, 2009. "Developments in the Analysis of Spatial Data," STICERD - Econometrics Paper Series 531, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Peter M Robinson, 2009. "Inference On Nonparametrically Trending Time Series With Fractional Errors," STICERD - Econometrics Paper Series 532, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    7. Robinson, Peter, 2008. "Developments in the analysis of spatial data," LSE Research Online Documents on Economics 25473, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.