IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/316.html
   My bibliography  Save this paper

Autocorrelation-Robust Inference - (Now published in 'Handbook of Statistics', vol.15, G S Maddala and C R Rao (eds), Elsevier Science Publishers BV (1997), pp.267-298.)

Author

Listed:
  • Peter M Robinson
  • Carlos Velasco

Abstract

We consider statistical inference in the presence of serial dependence. The main focus is on use of statistics that are constructed as if no dependence were believed present, and are asymptotically normal in the presence of dependence. Typically the variance in the limit distribution is affected by the dependence, and needs to be consistently estimated. We discuss first the leading caes of location and regression models, stressing least squares estimation. We then consider the use of robust estimates, such as M-estimates, in these models. We go on to discuss more general statistical models, including econometric models. The rules of inference adopted in these cases typically involve use of a bandwidth or smoothing number when the dependence introduces a nonparametric aspect, and we discuss choice of such numbers. We then consider some possibilities for improved inference by use of higher-order asymptotic theory and the bootstrap. The dependence considered in the paper is mostly of short-range type, but we also discuss forms of long-range dependence. Finally, we consider inference based on smoothed nonparametric estimates of probability densities and regression functions, where dependence often has no effect on first-order asymptotics.

Suggested Citation

  • Peter M Robinson & Carlos Velasco, 1996. "Autocorrelation-Robust Inference - (Now published in 'Handbook of Statistics', vol.15, G S Maddala and C R Rao (eds), Elsevier Science Publishers BV (1997), pp.267-298.)," STICERD - Econometrics Paper Series 316, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:316
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.