IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/262.html
   My bibliography  Save this paper

The Multivariate Invariance Principle for Globally Nonstationary Processes, with an Application to I(2) Models

Author

Listed:
  • James Davidson

Abstract

A multivariate invariance principle is given for dependent processes exhibiting trending variances and other types of global nonstationarity. The limit processes obtained in these results are not Brownian motion, but members of a related class of Gaussian diffusion processes. Also derived is the limit in distribution of the mean product of a vector partial sum process with its increments, a standard result for asymptotic analysis of regressions in integrated variables. These statistics converge to members of a class of stochastic integrals under the broad assumptions yielding the invariance principle. An important application of these results is the analysis of regressions with I(2) variables. The distributions of the regression coefficient and t-value in a simple model are derived and tabulated by simulation.

Suggested Citation

  • James Davidson, 1993. "The Multivariate Invariance Principle for Globally Nonstationary Processes, with an Application to I(2) Models," STICERD - Econometrics Paper Series 262, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:262
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.