IDEAS home Printed from https://ideas.repec.org/p/cen/wpaper/14-40.html
   My bibliography  Save this paper

Using Imputation Techniques To Evaluate Stopping Rules In Adaptive Survey Design

Author

Listed:
  • Thais Paiva
  • Jerry Reiter

Abstract

Adaptive Design methods for social surveys utilize the information from the data as it is collected to make decisions about the sampling design. In some cases, the decision is either to continue or stop the data collection. We evaluate this decision by proposing measures to compare the collected data with follow-up samples. The options are assessed by imputation of the nonrespondents under different missingness scenarios, including Missing Not at Random. The variation in the utility measures is compared to the cost induced by the follow-up sample sizes. We apply the proposed method to the 2007 U.S. Census of Manufacturers.

Suggested Citation

  • Thais Paiva & Jerry Reiter, 2014. "Using Imputation Techniques To Evaluate Stopping Rules In Adaptive Survey Design," Working Papers 14-40, Center for Economic Studies, U.S. Census Bureau.
  • Handle: RePEc:cen:wpaper:14-40
    as

    Download full text from publisher

    File URL: https://www2.census.gov/ces/wp/2014/CES-WP-14-40.pdf
    File Function: First version, 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schouten, Barry & Shlomo, Natalie & Skinner, Chris J., 2011. "Indicators for monitoring and improving representativeness of response," LSE Research Online Documents on Economics 39121, London School of Economics and Political Science, LSE Library.
    2. Robert M. Groves & Steven G. Heeringa, 2006. "Responsive design for household surveys: tools for actively controlling survey errors and costs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 439-457, July.
    3. Hang J. Kim & Jerome P. Reiter & Quanli Wang & Lawrence H. Cox & Alan F. Karr, 2014. "Multiple Imputation of Missing or Faulty Values Under Linear Constraints," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 375-386, July.
    4. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    5. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    6. Barry Schouten & Jelke Bethlehem & Koen Beullens & Øyvin Kleven & Geert Loosveldt & Annemieke Luiten & Katja Rutar & Natalie Shlomo & Chris Skinner, 2012. "Evaluating, Comparing, Monitoring, and Improving Representativeness of Survey Response Through R-Indicators and Partial R-Indicators," International Statistical Review, International Statistical Institute, vol. 80(3), pages 382-399, December.
    7. Chris Fraley & Adrian E. Raftery, 2007. "Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 24(2), pages 155-181, September.
    8. Shlomo, Natalie & Skinner, Chris J. & Schouten, Barry, 2012. "Estimation of an indicator of the representativeness of survey response," LSE Research Online Documents on Economics 39124, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paiva Thais & Reiter Jerome P., 2017. "Stop or Continue Data Collection: A Nonignorable Missing Data Approach for Continuous Variables," Journal of Official Statistics, Sciendo, vol. 33(3), pages 579-599, September.
    2. Barry Schouten & Natalie Shlomo, 2017. "Selecting Adaptive Survey Design Strata with Partial R-indicators," International Statistical Review, International Statistical Institute, vol. 85(1), pages 143-163, April.
    3. Roberts Caroline & Vandenplas Caroline & Herzing Jessica M.E., 2020. "A Validation of R-Indicators as a Measure of the Risk of Bias using Data from a Nonresponse Follow-Up Survey," Journal of Official Statistics, Sciendo, vol. 36(3), pages 675-701, September.
    4. Li-Chun Zhang & Ib Thomsen & Øyvin Kleven, 2013. "On the Use of Auxiliary and Paradata for Dealing With Non-sampling Errors in Household Surveys," International Statistical Review, International Statistical Institute, vol. 81(2), pages 270-288, August.
    5. Barry Schouten & Fannie Cobben & Peter Lundquist & James Wagner, 2016. "Does more balanced survey response imply less non-response bias?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 727-748, June.
    6. Kaminska Olena & Lynn Peter, 2017. "The Implications of Alternative Allocation Criteria in Adaptive Design for Panel Surveys," Journal of Official Statistics, Sciendo, vol. 33(3), pages 781-799, September.
    7. Jamie C. Moore & Peter W. F. Smith & Gabriele B. Durrant, 2018. "Correlates of record linkage and estimating risks of non‐linkage biases in business data sets," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1211-1230, October.
    8. Stephanie Coffey, PhD. & Jaya Damineni & John Eltinge, PhD. & Anup Mathur, PhD. & Kayla Varela & Allison Zotti, 2023. "Some Open Questions on Multiple-Source Extensions of Adaptive-Survey Design Concepts and Methods," Working Papers 23-03, Center for Economic Studies, U.S. Census Bureau.
    9. Lundquist Peter & Särndal Carl-Erik, 2013. "Aspects of Responsive Design with Applications to the Swedish Living Conditions Survey," Journal of Official Statistics, Sciendo, vol. 29(4), pages 557-582, December.
    10. Olga Maslovskaya & Peter Lugtig, 2022. "Representativeness in six waves of CROss‐National Online Survey (CRONOS) panel," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 851-871, July.
    11. Jamie C. Moore & Gabriele B. Durrant & Peter W. F. Smith, 2021. "Do coefficients of variation of response propensities approximate non‐response biases during survey data collection?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 301-323, January.
    12. Särndal Carl-Erik & Lundquist Peter, 2017. "Inconsistent Regression and Nonresponse Bias: Exploring Their Relationship as a Function of Response Imbalance," Journal of Official Statistics, Sciendo, vol. 33(3), pages 709-734, September.
    13. Vandenplas Caroline & Loosveldt Geert & Beullens Koen, 2017. "Fieldwork Monitoring for the European Social Survey: An illustration with Belgium and the Czech Republic in Round 7," Journal of Official Statistics, Sciendo, vol. 33(3), pages 659-686, September.
    14. Brick J. Michael, 2013. "Unit Nonresponse and Weighting Adjustments: A Critical Review," Journal of Official Statistics, Sciendo, vol. 29(3), pages 329-353, June.
    15. Osier, Guillaume, 2016. "Unit non-response in household wealth surveys," Statistics Paper Series 15, European Central Bank.
    16. Friedel Sabine & Birkenbach Tim, 2020. "Evolution of the Initially Recruited SHARE Panel Sample Over the First Six Waves," Journal of Official Statistics, Sciendo, vol. 36(3), pages 507-527, September.
    17. Nicole M. Dalzell & Jerome P. Reiter & Gale Boyd, 2017. "File Matching with Faulty Continuous Matching Variables," Working Papers 17-45, Center for Economic Studies, U.S. Census Bureau.
    18. Silvia Biffignandi & Alessandro Zeli, 2022. "Building panels from archives: the longitudinal representativity," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 121-138, April.
    19. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    20. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cen:wpaper:14-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dawn Anderson (email available below). General contact details of provider: https://edirc.repec.org/data/cesgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.