IDEAS home Printed from https://ideas.repec.org/p/cen/wpaper/07-07.html
   My bibliography  Save this paper

Estimating the Distribution of Plant-Level Manufacturing Energy Efficiency with Stochastic Frontier Regression

Author

Listed:
  • Gale Boyd

Abstract

A feature commonly used to distinguish between parametric/statistical models and engineering models is that engineering models explicitly represent best practice technologies while the parametric/statistical models are typically based on average practice. Measures of energy intensity based on average practice are less useful in the corporate management of energy or for public policy goal setting. In the context of company or plant level energy management, it is more useful to have a measure of energy intensity capable of representing where a company or plant lies within a distribution of performance. In other words, is the performance close (or far) from the industry best practice? This paper presents a parametric/statistical approach that can be used to measure best practice, thereby providing a measure of the difference, or �efficiency gap� at a plant, company or overall industry level. The approach requires plant level data and applies a stochastic frontier regression analysis to energy use. Stochastic frontier regression analysis separates the energy intensity into three components, systematic effects, inefficiency, and statistical (random) error. The stochastic frontier can be viewed as a sub-vector input distance function. One advantage of this approach is that physical product mix can be included in the distance function, avoiding the problem of aggregating output to define a single energy/output ratio to measure energy intensity. The paper outlines the methods and gives an example of the analysis conducted for a non-public micro-dataset of wet corn refining plants.

Suggested Citation

  • Gale Boyd, 2007. "Estimating the Distribution of Plant-Level Manufacturing Energy Efficiency with Stochastic Frontier Regression," Working Papers 07-07, Center for Economic Studies, U.S. Census Bureau.
  • Handle: RePEc:cen:wpaper:07-07
    as

    Download full text from publisher

    File URL: https://www2.census.gov/ces/wp/2007/CES-WP-07-07.pdf
    File Function: First version, 2007
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Jiang & Henk Folmer & Minhe Ji & Jianjun Tang, 2017. "Energy efficiency in the Chinese provinces: a fixed effects stochastic frontier spatial Durbin error panel analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(2), pages 301-319, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cen:wpaper:07-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dawn Anderson (email available below). General contact details of provider: https://edirc.repec.org/data/cesgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.