IDEAS home Printed from https://ideas.repec.org/p/cem/doctra/736.html
   My bibliography  Save this paper

Serie de Machine Learning. Revisión de Algebra Lineal 1

Author

Listed:
  • Sergio A. Pernice

Abstract

En este documento presentamos una primera revisión de álgebra lineal de una forma especialmente adaptada para sus eventuales aplicaciones en aprendizaje automático (machine learning). Es el primero de una serie de documentos sobre machine learning en español. Es parte del contenido del curso “Métodos de Machine Learning para Economistas” de la Maestría en Economía de la UCEMA.

Suggested Citation

  • Sergio A. Pernice, 2020. "Serie de Machine Learning. Revisión de Algebra Lineal 1," CEMA Working Papers: Serie Documentos de Trabajo. 736, Universidad del CEMA.
  • Handle: RePEc:cem:doctra:736
    as

    Download full text from publisher

    File URL: https://ucema.edu.ar/publicaciones/download/documentos/736.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomás Marinozzi & Leandro Nallar & Sergio Pernice, 2021. "Intuitive Mathematical Economics Series. General Equilibrium Models and the Gradient Field Method," CEMA Working Papers: Serie Documentos de Trabajo. 820, Universidad del CEMA.

    More about this item

    Keywords

    álgebra lineal; regresiones; machine learning; aprendizaje automático.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cem:doctra:736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valeria Dowding (email available below). General contact details of provider: https://edirc.repec.org/data/cemaaar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.