Author
Abstract
Commercial vehicles typically represent a small fraction of vehicular traffic on most roadways. However, their influence on the economy, environment, traffic performance, infrastructure, and safety are much more significant than their diminutive numerical presence suggests. This dissertation describes the development and prototype implementation of a new highfidelity inductive loop sensor and a ground-breaking commercial vehicle classification system based on the vehicle inductive signatures obtained from this sensor technology. This new sensor technology is relatively easy to install and has the potential to yield reliable and highly detailed vehicle inductive signatures for advanced traffic surveillance applications. The Speed PRofile INterpolation Temporal-Spatial (SPRINTS) transformation model developed in this dissertation improves vehicle signature data quality under adverse traffic conditions where acceleration and deceleration effects can distort inductive vehicle signatures. The axle classification model enables commercial vehicles to be classified accurately by their axle configuration. The body classification models reveal the function and unique impacts of the drive and trailer units of each commercial vehicle. Together, the results reveal the significant potential of this inductive sensor technology in providing a more comprehensive commercial vehicle data profile based on a unique ability to extract both axle configuration information as well as high fidelity undercarriage profiles within a single sensor technology to provide richer insight on commercial vehicle travel statistics.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt92x23786. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.