Author
Abstract
One of the major foci in transport research is the identification of the temporal-spatial decision making structure embedded in activity scheduling and its linkage to actual activity/travel execution. The latter part of the research in question has not been explored explicitly in real life situations due to the lack of effective data collection means. This research presented a real-time activity scheduling, activity/travel survey system that incorporates the extraction of activity scheduling and activity implementation information within one unified data collection framework, under the assumption that in reality activity scheduling and execution are an integral and dynamic process that continuously evolves over multiple time horizons. During a pilot study of 20 subjects, the system demonstrated its ability in successfully capturing the survey participants’ activity scheduling process and relevant activity execution into an organized dataset in the real-life, mobile environment. With the uniqueness of these empirical data in their full coverage of travel modes, site-to-site travel trace and concurrent tracing of activity scheduling and execution, they were used for explicitly exploring traveler’s routing choices, scheduling pattern and modeling the linkages (congruence and deviation relations) between the actual activity implementation and activity schedules with respect to the participants’ social-demographic characteristics and recorded schedule/activity/travel attributes. Using a binary logistic modeling approach, the research revealed that people’s routing behavior varies with gender, travel distance, different travel modes and activity categories. By exploratory statistics and missing value analysis, the research showed that activity scheduling behavior does not apply to activity categories in an equivalent way. Finally, the activity participation choice and start time decision making as revealed in the collected dataset were coalesced into a two-stage decision paradigm and modeled via nested logistic modeling and a multinomial logistic modeling approach. The influencing factors on the linkage between activity scheduling and execution were revealed. The multinomial modeling results showed the quantitative measures of the effects of factor changes on activity start time choices.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt8517g690. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.