IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt7w88d089.html
   My bibliography  Save this paper

Real-Time Mass Passenger Transport Network Optimization Problems

Author

Listed:
  • Pages, Laia
  • Jayakrishnan, R.
  • Cortes, Cristian E.

Abstract

The aim of Real-Time Mass Transport Vehicle Routing Problem (MTVRP) is to find a solution to route n vehicles in real time to pick up and deliver m passengers. This problem is described in the context of flexible large-scale mass transportation options that use new technologies for communication among passengers and vehicles. The solution of such a problem is relevant to future transportation options involving large scale real-time routing of shared-ride fleet transit vehicles. However, the global optimization of a complex system involving routing and scheduling multiple vehicles and passengers as well as design issues has not been strictly studied in the past. This research proposes a methodology to solve it by using a three level hierarchical optimization approach. Within the optimization process, a Mass Transport Network Design Problem (MTNDP) is solved. This paper introduces MTVRP and presents a scheme to solve it. Then, the associated algorithm to perform the MTNDP optimization is described in detail. An instance for the city of Barcelona, Spain is solved, showing promising results with regard to the applicability of the methodology for large scale transit problems.

Suggested Citation

  • Pages, Laia & Jayakrishnan, R. & Cortes, Cristian E., 2005. "Real-Time Mass Passenger Transport Network Optimization Problems," University of California Transportation Center, Working Papers qt7w88d089, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt7w88d089
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7w88d089.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gouveia, Luis & Vo[ss], Stefan, 1995. "A classification of formulations for the (time-dependent) traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 69-82, May.
    2. Michel Gendreau & Alain Hertz & Gilbert Laporte & Mihnea Stan, 1998. "A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time Windows," Operations Research, INFORMS, vol. 46(3), pages 330-335, June.
    3. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    4. Patrick Jaillet, 1988. "A Priori Solution of a Traveling Salesman Problem in Which a Random Subset of the Customers Are Visited," Operations Research, INFORMS, vol. 36(6), pages 929-936, December.
    5. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    6. Lawrence D. Bodin, 1990. "Twenty Years of Routing and Scheduling," Operations Research, INFORMS, vol. 38(4), pages 571-579, August.
    7. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    2. Ehsan Khodabandeh & Lihui Bai & Sunderesh S. Heragu & Gerald W. Evans & Thomas Elrod & Mark Shirkness, 2017. "Modelling and solution of a large-scale vehicle routing problem at GE appliances & lighting," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1100-1116, February.
    3. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    4. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    5. Schneider, Kellie & Nurre, Sarah G., 2019. "A multi-criteria vehicle routing approach to improve the compliance audit schedule for food banks," Omega, Elsevier, vol. 84(C), pages 127-140.
    6. Asbach, Lasse & Dorndorf, Ulrich & Pesch, Erwin, 2009. "Analysis, modeling and solution of the concrete delivery problem," European Journal of Operational Research, Elsevier, vol. 193(3), pages 820-835, March.
    7. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    8. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    9. Gerhard Hiermann & Matthias Prandtstetter & Andrea Rendl & Jakob Puchinger & Günther Raidl, 2015. "Metaheuristics for solving a multimodal home-healthcare scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 89-113, March.
    10. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    11. Chiang, Wen-Chyuan & Russell, Robert & Xu, Xiaojing & Zepeda, David, 2009. "A simulation/metaheuristic approach to newspaper production and distribution supply chain problems," International Journal of Production Economics, Elsevier, vol. 121(2), pages 752-767, October.
    12. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    13. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    14. Zäpfel, Günther & Bögl, Michael, 2008. "Multi-period vehicle routing and crew scheduling with outsourcing options," International Journal of Production Economics, Elsevier, vol. 113(2), pages 980-996, June.
    15. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    16. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    17. Michelle Dunbar & Simon Belieres & Nagesh Shukla & Mehrdad Amirghasemi & Pascal Perez & Nishikant Mishra, 2020. "A genetic column generation algorithm for sustainable spare part delivery: application to the Sydney DropPoint network," Annals of Operations Research, Springer, vol. 290(1), pages 923-941, July.
    18. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    19. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    20. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).

    More about this item

    Keywords

    Social and Behavioral Sciences;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt7w88d089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.