Author
Abstract
The success of a high occupancy vehicle lane in motivating people to shift to carpools and buses depends on maintaining a travel time differential between it and the adjacent general purpose lanes. This differential, in turn, depends on the level of continuing delay on the general purpose lanes. Therefore, it is clear that a high occupancy vehicle lane that will motivate people to shift to high occupancy vehicles will not eliminate congestion. Consequently, it is not clear that constructing a high occupancy vehicle lane will necessarily reduce delay more than construction of a general purpose lane. The objective of this research is to determine the circumstances in which this would be the case. The hypothesis is that such circumstances would be quite limited, and this proves to be the case. The intended benefits of high occupancy lanes are defined as reduced person-delay and reduced emissions. A model is developed to calculate these benefits for four alternatives add a high occupancy vehicle lane, add a general purpose lane, convert an existing lane to a high occupancy vehicle lane, and do nothing. The model takes into account the initial conditions, the dynamic nature of the travel time differential between the high occupancy vehicle lane and other lanes, and the uncertainty regarding the extent to which people will shift modes. It combines queueing theory and mode choice theory and provides a robust method for comparing alternatives using a small amount of easily observed data. Application of the model in typical situations shows that with initial delays on the order of 15 min or more, adding a high occupancy vehicle lane would provide substantial reductions in delay and some reduction in emissions. However, in a wide range of such situations, adding a general purpose lane would be even more effective. Only if the initial delay is long and the initial proportion of high occupancy vehicles falls in a rather narrow range, would an added high occupancy vehicle lane be more effective. The proportion of high occupancy vehicles must be such that it allows good utilization of the high occupancy vehicle lane while maintaining a sufficient travel time differential to motivate a shift to buses or carpools. Adding a high occupancy vehicle lane to a three lane freeway will be more effective than adding a general purpose lane only if the initial maximum delay is on the order of 35 min or more and the proportion of high occupancy vehicles is on the order of 20%. Federal policies encourage construction of high occupancy vehicle lanes and restrict funding for general purpose lanes in areas that have not attained air quality standards. The findings of this research suggest a need to reconsider these policies.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt1v11k99t. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.