IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt6683p9sj.html
   My bibliography  Save this paper

A Variable Formulation of Kinematic Waves: Solution Methods

Author

Listed:
  • Daganzo, Carlos F.

Abstract

This paper presents improved solution methods for kinematic wave trafficc problems with concave flow-density relations. As explained in part I of this work, the solution of a kinematic wave problem is a set of continuum least-cost paths in space-time. The least cost to reach a point is the vehicle number. The idea here consists in overlaying a dense but discrete network with appropriate costs in the solution region and then using a shortest-path algorithm to estimate vehicle numbers. With properly designed networks, this procedure is more accurate than existing methods and can be applied to more complicated problems. In many important cases its results are exact.

Suggested Citation

  • Daganzo, Carlos F., 2003. "A Variable Formulation of Kinematic Waves: Solution Methods," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6683p9sj, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt6683p9sj
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6683p9sj.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 2003. "A Variational Formulation for a Class of First Order PDE's," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5p54n38q, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daganzo, Carlos F., 2006. "In traffic flow, cellular automata = kinematic waves," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 396-403, June.
    2. Daganzo, Carlos F. & Laval, Jorge A., 2005. "Moving bottlenecks: A numerical method that converges in flows," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 855-863, November.
    3. Daganzo, Carlos F., 2004. "In Traffic Flow, Cellular Automata = Kinematic Waves," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8ht0z7mk, Institute of Transportation Studies, UC Berkeley.
    4. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: Solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 934-950, December.
    5. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: basic theory and complex boundary conditions," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 187-196, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt6683p9sj. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.