IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt44k8p47h.html
   My bibliography  Save this paper

On the perceptibility of safety systems

Author

Listed:
  • Grembek, Offer
  • Daganzo, Carlos F.

Abstract

The perceptibility of a safety system is defined as the extent to which the system can be perceived by the senses or the mind. The objective here is to study which safety systems are more easily perceived by the user and to identify design attributes that affect this level of perception. A web-based, pairwise comparison survey was conducted to evaluate the perceptibility of fifteen safety systems ranging from traffic safety systems to consumer safety. The analytic hierarchy process was applied to estimate the perceptibility levels and rank the safety systems. The results show that protection systems that require activation are more perceptible than passive ones.

Suggested Citation

  • Grembek, Offer & Daganzo, Carlos F., 2010. "On the perceptibility of safety systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt44k8p47h, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt44k8p47h
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/44k8p47h.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Aragonés‐Beltrán & Mª. Carmen González‐Cruz & Astrid León‐Camargo & Rosario Viñoles‐Cebolla, 2023. "Assessment of regional development needs according to criteria based on the Sustainable Development Goals in the Meta Region (Colombia)," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1101-1121, April.
    2. Chetan A. Jhaveri & Jitendra M. Nenavani, 2020. "Evaluation of eTail Services Quality: AHP Approach," Vision, , vol. 24(3), pages 310-319, September.
    3. Laila Oubahman & Szabolcs Duleba, 2022. "A Comparative Analysis of Homogenous Groups’ Preferences by Using AIP and AIJ Group AHP-PROMETHEE Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    4. Sharma, Mahak & Sehrawat, Rajat, 2020. "A hybrid multi-criteria decision-making method for cloud adoption: Evidence from the healthcare sector," Technology in Society, Elsevier, vol. 61(C).
    5. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    6. Andreas Schiessl & Richard Müller & Rebekka Volk & Konrad Zimmer & Patrick Breun & Frank Schultmann, 2020. "Integrating site-specific environmental impact assessment in supplier selection: exemplary application to steel procurement," Journal of Business Economics, Springer, vol. 90(9), pages 1409-1457, November.
    7. Crary, Michael & Nozick, L. K. & Whitaker, L. R., 2002. "Sizing the US destroyer fleet," European Journal of Operational Research, Elsevier, vol. 136(3), pages 680-695, February.
    8. Giada Feletti & Mariachiara Piraina & Boris Petrenj & Paolo Trucco, 2022. "Collaborative capability building for critical infrastructure resilience: assessment and selection of good practices," Environment Systems and Decisions, Springer, vol. 42(2), pages 207-233, June.
    9. Pérez-Mesa, Juan Carlos & Galdeano-Gómez, Emilio & Salinas Andújar, Jose A., 2012. "Logistics network and externalities for short sea transport: An analysis of horticultural exports from southeast Spain," Transport Policy, Elsevier, vol. 24(C), pages 188-198.
    10. José María Moreno-Jiménez & Manuel Salvador & Pilar Gargallo & Alfredo Altuzarra, 2016. "Systemic decision making in AHP: a Bayesian approach," Annals of Operations Research, Springer, vol. 245(1), pages 261-284, October.
    11. Rabelo, Luis & Eskandari, Hamidreza & Shaalan, Tarek & Helal, Magdy, 2007. "Value chain analysis using hybrid simulation and AHP," International Journal of Production Economics, Elsevier, vol. 105(2), pages 536-547, February.
    12. J González-Pachón & C Romero, 2006. "An analytical framework for aggregating multiattribute utility functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1241-1247, October.
    13. Marlow, David R. & Beale, David J. & Mashford, John S., 2012. "Risk-based prioritization and its application to inspection of valves in the water sector," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 67-74.
    14. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    15. Orduño, Miguel Angel & Kallas, Zein & Ornelas, Selene Ivette, 2021. "Climate Change Adaptation and Mitigation Actions Based on Farmers' Environmental Preferences and Perceptions. Sustainable Agriculture, Mexico," 2021 Conference, August 17-31, 2021, Virtual 314967, International Association of Agricultural Economists.
    16. Ivona Ivić & Anita Cerić, 2024. "Mitigation Measures for Information Asymmetry between Participants in Construction Projects: The Impact of Trust," Sustainability, MDPI, vol. 16(16), pages 1-27, August.
    17. Wiebke Mohr & Anika Rädke & Adel Afi & Franka Mühlichen & Moritz Platen & Annelie Scharf & Bernhard Michalowsky & Wolfgang Hoffmann, 2022. "Development of a Quantitative Preference Instrument for Person-Centered Dementia Care—Stage 2: Insights from a Formative Qualitative Study to Design and Pretest a Dementia-Friendly Analytic Hierarchy ," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    18. Targetti, Stefano & Schaller, Lena L. & Kantelhardt, Jochen, 2021. "A fuzzy cognitive mapping approach for the assessment of public-goods governance in agricultural landscapes," Land Use Policy, Elsevier, vol. 107(C).
    19. Le Zhang & Xueyan Li & Yanlong Guo, 2024. "Research on the Influencing Factors of Spatial Vitality of Night Parks Based on AHP–Entropy Weights," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
    20. Paredes-Frigolett, Harold & Pyka, Andreas & Leoneti, Alexandre Bevilacqua, 2021. "On the performance and strategy of innovation systems: A multicriteria group decision analysis approach," Technology in Society, Elsevier, vol. 67(C).

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt44k8p47h. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.