Author
Listed:
- Coleri, Sinem
- Varaiya, Pravin
Abstract
We consider a class of sensor networks with two special characteristics. First, the nodes periodically generate data for transfer to a distinguished node called the access point. Second, the nodes are (transmit) power and energy limited, but the access point, which communicates with the 'outside world', is not so limited. Such networks might be used for instance when a geographically distributed physical process, such as traffic on a freeway or at an urban street intersection, is periodically sensed for purposes of process control. We propose a medium access control scheme, called PEDAMACS, for this special class of networks. PEDAMACS uses the high-powered access point to synchronize the nodes and to schedule their transmissions and receptions in a TDMA manner. The protocol first enables the access point to gather topology (connectivity) information. A scheduling algorithm then determines when each node should transmit its data, and the access point announces the transmission schedule to the other nodes. The scheduling algorithm ideally should minimize the delay-the time needed for data from all nodes to reach the access point. However, this optimization problem is NP-complete. PEDAMACS instead uses a polynomial-time scheduling algorithm which guarantees a delay proportional to the number of nodes in the sensor network. Because PEDAMACS schedules node transmissions, its performance is much better than that of protocols designed for more general contention (or random access) networks in terms of power consumption, delay, fairness, and congestion control. The comparison is based on simulations in TOSSIM, a simulation environment for TinyOS, the operating system for the Berkeley sensor nodes. For the traffic application we consider, the PEDAMACS network provides a lifetime of several years compared to several months and days based on random access schemes with and without sleep cycles respectively, making sensor network technology economically viable.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt1870b4g7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.