IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt14k0v1zk.html
   My bibliography  Save this paper

Vehicle Lateral Control under Fault in Front and/or Rear Sensors

Author

Listed:
  • Huang, Jihua
  • Lu, Guang
  • Tomizuka, Masayoshi

Abstract

The objectives of the project are: (1) to study the behavior of existing vehicle lateral control systems in the event of magnetometer failures, (2) to design controllers that use the output from only one set of magnetometers, and (3) to develop an autonomous lateral control scheme that uses no magnetometers. The performance of existing lateral control systems subject to magnetometer fail- ures is evaluated based on both linearized and complex nonlinear vehicle models. Simulation results indicate that rear magnetometer failures result in degraded oper- ation, and that front magnetometer failures cause instability in the control system. Two output feedback controllers, one using the output of front magnetometers alone and the other using the output of rear magnetometers alone, are designed based on the H1 optimal control technique. The H1 optimal control procedure synthesizes optimal controllers which minimize the e ects of disturbance and sensor noise on the lateral error and control e ort. Simulations performed with these two controllers show satisfactory performance for longitudinal velocities up to 30m=s. When both front and rear magnetometers fail, autonomous lateral control based on Intelligent Ranging using Infrared Sensors (IRIS) allows the vehicle to follow its preceding vehicle. Simulation results for a platoon of three vehicles show that the lateral error of the leading vehicle is ampli ed by the following vehicles. An integrated controller that combines the information from IRIS and rear magnetometers is de- signed. Simulations show that this control scheme provides better tracking accuracy than autonomous lateral control. Keywords: vehicle lateral control, bicycle model, H1 optimal control, autonomous lateral control, vehicle following.

Suggested Citation

  • Huang, Jihua & Lu, Guang & Tomizuka, Masayoshi, 2000. "Vehicle Lateral Control under Fault in Front and/or Rear Sensors," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt14k0v1zk, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt14k0v1zk
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/14k0v1zk.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Guang & Huang, Jihua & Tomizuka, Masayoshi, 2003. "Vehicle Lateral Control Under Fault in Front and/or Rear Sensors," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt59p5253q, Institute of Transportation Studies, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt14k0v1zk. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.