Author
Listed:
- Harvey, John T
- Mateos, Angel
- Buscheck, Jeff
- Rahman, Mohammad
- Brotschi, Julian
- Fonturbel, Julia
- Cazares-Ramirez, Anai
- Elkashef, Mohamed
- Jones, David
Abstract
The goal of the research presented in this report is to study how the mechanical properties of hot mix asphalt change upon the addition of high contents of reclaimed asphalt pavement (RAP) and the inclusion of any amount of recycled asphalt shingles (RAS), with between 25% and 50% binder replacement and to consider the addition of recycling agents to reduce the increase in stiffness and corresponding decrease in fatigue resistance. To achieve this goal, 16 mixes and the corresponding binders were fabricated and tested in the laboratory. The mix factorial includes a control gradation, two virgin binders (PG 64-16 and PG 58-28, from different sources), two RAPs with different levels of aging (PG high temperatures of 102°C and 109°C), one RAS, and two recycling agents (a petroleum-derived aromatic and a tall oil). The testing of the binders included performance grade (PG), shear stiffness, and Fourier transform infrared spectroscopy. The testing of the mixes included stiffness, four-point flexural fatigue resistance, rutting resistance, and the IDEAL cracking tolerance (IDEAL-CT) test. The main conclusion from this study is that most of the increased stiffness effects of high RAP and/or RAS addition can be offset by using recycling agents and/or reducing the stiffness of the virgin binder by reducing the PG binder grade. Two approaches are proposed to determine an appropriate dosage of recycling agent. The first focuses on restoring the mechanical properties of the mix with high RAP/RAS content back to the properties of a control mix with either no RAP/RAS or a low RAP/RAS content. The second approach focuses on meeting the required performance-related specifications within the balanced mix design framework by using the minimum amount of recycling agent. It was found that restoring the PG high temperature of the binder blend, a commonly followed approach, may result in unnecessarily high recycling agent doses with a consequent increase in cost and greenhouse gas emissions and the over-softening of the mix at intermediate and low temperatures.
Suggested Citation
Harvey, John T & Mateos, Angel & Buscheck, Jeff & Rahman, Mohammad & Brotschi, Julian & Fonturbel, Julia & Cazares-Ramirez, Anai & Elkashef, Mohamed & Jones, David, 2024.
"Analysis of Recycling Agent Effects on the Mechanical Properties of HMA with High Recycled Binder Ratios,"
Institute of Transportation Studies, Working Paper Series
qt9gn079w4, Institute of Transportation Studies, UC Davis.
Handle:
RePEc:cdl:itsdav:qt9gn079w4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt9gn079w4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.